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Abstract

This paper proposes normative criteria for voting rules under uncertainty about indi-

vidual preferences to characterize a weighted majority rule (WMR). The criteria stress the

significance of responsiveness, i.e., the probability that the social outcome coincides with

the realized individual preferences. A voting rule is said to be robust if, for any proba-

bility distribution of preferences, the responsiveness of at least one individual is greater

than one-half. This condition is equivalent to the seemingly stronger condition requiring

that, for any probability distribution of preferences and any deterministic voting rule, the

responsiveness of at least one individual is greater than that under the deterministic voting

rule. Our main result establishes that a voting rule is robust if and only if it is a WMR with-

out ties. This characterization of a WMR avoiding the worst possible outcomes provides

a new complement to the well-known characterization of a WMR achieving the optimal

outcomes, i.e., efficiency in the set of all random voting rules.
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1 Introduction

Consider the choice of a voting rule on a succession of two alternatives (such as “yes” or “no”)

by a group of individuals. When a voting rule is chosen, the alternatives to come in the future

are unknown, and the individuals are uncertain about their future preferences. An individual

votes sincerely being concerned with the probability that the outcome agrees with his or her

preference, which is referred to as responsiveness (Rae, 1969). More specifically, an individual

prefers a voting rule with higher responsiveness because he or she can expect that a favorable

alternative is more likely to be chosen. For example, if an individual has a von Neumann-

Morgenstern (VNM) utility function such that the utility from the passage of a favorable issue is

one and that of an unfavorable issue is zero, then the expected utility equals the responsiveness.

Imagine that a social planner proposes a voting rule under which the responsiveness of

every individual is less than one-half. Then, the individuals may unanimously reject this

proposal not only because the collective decision reflects minority preferences on average but

also because there exists a voting rule that Pareto dominates this rule in terms of responsiveness.

To demonstrate it, consider a voting rule whose collective decision always disagrees with that

of the original rule, which is referred to as the inverse rule. Then, the responsiveness of every

individual under the inverse rule is greater than one-half, i.e., greater than that under the original

rule, because the sum of the former responsiveness and the latter responsiveness equals one.

Therefore, the social planner regards it as a minimum requirement for a voting rule that the

responsiveness of at least one individual should be greater than one-half, or equivalently, greater

than the responsiveness under the inverse rule.

To find out whether the minimum requirement is satisfied, the social planner must know

the true probability distribution over preferences. In some circumstances, however, not only

the true distribution is unknown but also individuals’ subjective beliefs are unobservable.

Then, the social planner asks the following question: what voting rule satisfies this minimum

requirement under any probability distribution of preferences? We call such a voting rule

robustly undominated by the inverse rule, or robust for short,1 and propose it as a normative

criterion for voting rules. From the social planner’s viewpoint, robustness is understood as a

conservative criterion to avoid the worst-case scenario of violating the minimum requirement.

In one sense, robustness looks very weak because it concerns the minimum requirement; in

1We borrow the term “robustness” from robust statistics, statistics with good performance for data drawn from

a wide range of probability distributions (Huber, 1981).
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another sense, it looks very strong because the minimum requirement must always be satisfied

under any probability distribution of preferences.

This paper introduces two types of robustness criteria and characterizes the classes of voting

rules satisfying them. The criteria require that a voting rule should avoid the following worst-

case scenarios. The first worst-case scenario is that the true responsiveness of every individual

is less than or equal to one-half, or equivalently, the inverse rule weakly Pareto dominates this

rule. A voting rule is said to be robust if, for any probability distribution of preferences, it

avoids this scenario. It is easily shown that, for any probability distribution of preferences, not

only the inverse rule but also any other deterministic voting rule never weakly Pareto dominates

a robust rule. Thus, robustness requires a voting rule to be robustly maximal with respect to the

Pareto order over the set of deterministic voting rules. By replacing “less than or equal to” with

“strictly less than” in the first worst-case scenario, we obtain a slightly more severe scenario.

The second worst-case scenario is that the true responsiveness of every individual is strictly

less than one-half, or equivalently, the inverse rule strictly Pareto dominates this rule. A voting

rule is said to be weakly robust if, for any probability distribution of preferences, it avoids this

scenario. Under weakly robust rules, the responsiveness of every individual can be less than or

equal to one-half, as long as the responsiveness of at least one individual is equal to one-half.

In this case, a collective decision is at best neutral to each individual’s choice on average, which

is never the case under robust rules.

Our criteria are based upon the notion of Pareto dominance when individuals are assumed to

have common beliefs rather than heterogeneous beliefs. This is because Pareto dominance under

heterogeneous beliefs is not as normatively compelling as Pareto dominance under common

beliefs (Gilboa et al., 2004; Mongin, 2016).2 To illustrate it, imagine that individuals vote on

some amendment and there are two types of individuals. An individual of type 1 prefers the

approval and believes that more than two-thirds of the individuals have the same preferences and

vote yes. An individual of type 2 prefers the disapproval and believes that more than one-third

of the individuals have the same preferences and vote no. When the two-thirds rule is proposed,

where the amendment is approved if and only if more than two-thirds of the individuals vote

yes, both types of individuals unanimously agree to adopt it because they believe the preferred

outcome to be chosen on the basis of incompatible beliefs. As argued by Mongin (2016), such

2Blume et al. (2018) compare complete markets and incomplete markets when individuals have heterogeneous

beliefs and demonstrate potential social benefits from restrictions on trade that make markets incomplete.
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spurious unanimity is normatively inappropriate.

The main result establishes that a voting rule is robust if and only if it is a weighted majority

rule (WMR) without ties; we also show that a voting rule is weakly robust if and only if it is a

WMR allowing ties with an arbitrary tie-breaking rule. By this result together with the property

of WMRs, we find that, for any probability distribution of preferences, there exists no random

voting rule that weakly (strictly) Pareto dominates a (weakly) robust rule. The proof is based

upon the theorem of alternatives due to von Neumann and Morgenstern (1944), which is also

known as a corollary of Farkas’ lemma.

We apply the above result to anonymous rules, which are considered to be fair, and obtain

the following characterization of robust anonymous rules. A simple majority rule (SMR) is a

unique robust anonymous rule when the number of individuals is odd, whereas no anonymous

rule is robust when the number of individuals is even. In the latter case, however, a SMR with

an anonymous tie-breaking rule is a weakly robust anonymous rule. This implies that we face a

trade-off between robustness and anonymity when the number of individuals is even: we must

be content with a nonanonymous rule if we require robustness and we must be content with a

weakly robust rule if we require anonymity.

To illustrate the difference between robustness and weak robustness as well as the trade-off

between robustness and anonymity, assume that the number of individuals is even and consider

SMRs. A SMR with some tie-breaking rule is robust if and only if it is represented as a

WMR allowing no ties. For example, a SMR with a casting (tie-breaking) vote is a robust

nonanonymous rule. On the other hand, a SMR with any tie-breaking rule is weakly robust. In

particular, a SMR with the status quo tie-breaking rule (i.e., the status quo is followed whenever

there is a tie) is a weakly robust anonymous rule. Because no anonymous rule is robust when the

number of individuals is even, the choice between the two SMRs depends upon which criterion

to prioritize, and notice that, in the real world, both rules are widely used. A SMR with a

casting vote is used by legislatures such as the United States Senate, the Australian House of

Representatives, and the National Diet of Japan. A SMR with the status quo tie-breaking rule

is used by legislatures such as the New Zealand House of Representatives, the British House of

Commons, and the Australian Senate.

Our characterization of a WMR complements the well-known characterization of a WMR

due to Rae (1969), Taylor (1969), and Fleurbaey (2008). Their result, which we call the Rae-

Taylor-Fleurbaey (RTF) theorem, states that a voting rule is a WMR if and only if it maximizes
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the corresponding weighted sum of responsiveness over all individuals, where a probability

distribution of preferences is assumed to be known. The normative implication of the RTF

theorem is efficiency of WMRs under a fixed probability distribution of preferences;3 that is, a

voting rule is efficient in the set of random voting rules in terms of responsiveness if and only

if it is a WMR.

We emphasize that efficiency and robustness are distinct sufficient conditions for WMRs.

A voting rule is efficient if, under a fixed probability distribution of preferences, any random

voting rule never Pareto dominates this rule. In contrast, a voting rule is robust if, under any

probability distribution of preferences, the inverse rule never Pareto dominates this rule. Thus,

to check efficiency, we need to consider all random voting rules, i.e., all probability distributions

of voting rules, ensuring that the optimal outcome is achieved. On the other hand, to check

robustness, we need to consider all probability distributions of preferences, ensuring that the

worst outcome is avoided. Because robustness and efficiency are different requirements, the

sufficiency of robustness for WMRs is not implied by the RTF theorem.

This paper not only contributes to the literature on the axiomatic foundations of a SMR

or a WMR (May, 1952; Fishburn, 1973), but also joins a recently growing literature on the

worst-case approach to economic design. Most studies in the latter literature, however, have

focused on design of a mechanism maximizing the worst-case value of an objective function,

where details of the environment are not fully known to the designer. For example, Chung

and Ely (2007) consider a revenue maximization problem in a private value auction where the

auctioneer does not know the agents’ exact belief structures4 and show that the optimal auction

rule is a dominant-strategy mechanism when the auctioneer evaluates rules by their worst-case

performance. On the other hand, Carroll (2015) considers a moral hazard problem where the

principal does not know the agent’s set of possible actions exactly and shows that the optimal

contract is linear when the principal evaluates contracts by their worst-case performance.5

At the same time, our criterion requiring “Pareto-ranking robustness” is different from the

maximin criterion requiring “performance robustness” adopted by the above papers. Mathe-

3See also Schmitz and Tröger (2012) and Azrieli and Kim (2014).
4This is a standard assumption in robust mechanism design (Bergemann and Morris, 2005).
5Other recent examples of economic design with worst-case objectives include Bergemann and Schlag (2011),

Yamashita (2015), Bergemann et al. (2016), Carroll (2017), Chen and Li (2018), Auster (2018), Carrasco et al.

(2018), Du (2018), and Yamashita and Zhu (2021) among others. See also a recent survey by Carroll (2019). In

decision theory, Gilboa and Schmeidler (1989) is a seminal paper.
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matically, our criterion is rather close to a Pareto criterion avoiding the problem of spurious

unanimity, in particular, the belief-neutral Pareto criterion introduced by Brunnermeier et al.

(2014) in their study of financial markets.6 Let us translate it into our model. Assume that in-

dividuals’ subjective beliefs are observable to a social planner. Under this assumption, a voting

rule is said to be belief-neutral efficient if it is efficient under any belief in the convex hull of

the individuals’ beliefs. Thus, any convex combination of the individuals’ beliefs is considered

to be possible in the belief-neutral Pareto criterion, whereas all beliefs are considered to be

possible in our criterion, although we focus on the comparison of a deterministic voting rule

and its inverse rule. In other words, our criterion is understood as a comprehensively belief-free

criterion.7

The rest of this paper is organized as follows. Section 2 summarizes properties of WMRs

which will be used in the subsequent sections. Section 3 introduces the concepts of robustness.

Section 4 characterizes robust rules. Section 5 compares our result and the RTF theorem. We

discuss several extensions in Section 6 and conclude the paper in Section 7.

2 Weighted majority rules

Consider a group of individuals 𝑁 = {1, . . . , 𝑛} that faces a choice between two alternatives

−1 and 1. The choice of individual 𝑖 ∈ 𝑁 is represented by a decision variable 𝑥𝑖 ∈ {−1, 1}.

The choices of the group members are summarized by a decision profile 𝑥 = (𝑥𝑖)𝑖∈𝑁 . Let

X = {−1, 1}𝑛 denote the set of all possible decision profiles.

A deterministic voting rule, or a voting rule for short, is a mapping 𝜙 : X → {−1, 1}, which

assigns a collective decision 𝜙(𝑥) ∈ {−1, 1} to each 𝑥 ∈ X. The set of all voting rules is denoted

by Φ. For 𝜙 ∈ Φ, let −𝜙 ∈ Φ be a voting rule whose collective decision always disagrees with

that of 𝜙, i.e., (−𝜙)(𝑥) = −𝜙(𝑥) for all 𝑥 ∈ X. This voting rule is referred to as the inverse

rule of 𝜙. Although we mainly study a deterministic voting rule, we occasionally consider a

random voting rule as well. A random voting rule is a mapping 𝜙 : X → [−1, 1], which is

interpreted as follows: 𝜙 assigns a collective decision +1 with probability (1 + 𝜙(𝑥))/2 and −1

with probability (1 − 𝜙(𝑥))/2 to each 𝑥 ∈ X. The set of all random voting rules is denoted by

Δ(Φ).

6For other criteria, see Gilboa et al. (2004), Gilboa et al. (2014), and Gayer et al. (2014).
7Admittedly, our criterion can be too extreme in some situations. See the discussion in Section 6.
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A voting rule 𝜙 ∈ Φ is a weighted majority rule (WMR)8 if there exists a nonzero weight

vector9 𝑤 = (𝑤𝑖)𝑖∈𝑁 ∈ R𝑛 satisfying

𝜙(𝑥) =


1 if
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖 > 0,

−1 if
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖 < 0.
(1)

A simple majority rule (SMR) is a special case with positive equal weights, i.e., 𝑤𝑖 = 𝑤 𝑗 > 0

for all 𝑖, 𝑗 ∈ 𝑁 . When there is a tie, i.e.
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖 = 0, a tie-breaking rule is used to determine

a WMR. For example, a SMR requires a tie-breaking rule if 𝑛 is even. A tie-breaking rule can

be either deterministic or random. A WMR with a random tie-breaking rule is a random voting

rule 𝜙 ∈ Δ(Φ) satisfying (1) (with 𝜙 replaced by 𝜙).

A voting rule 𝜙 ∈ Φ is anonymous if it is symmetric in its 𝑛 variables; that is, 𝜙(𝑥) = 𝜙(𝑥𝜋)

for each 𝑥 ∈ X and each permutation 𝜋 : 𝑁 → 𝑁 , where 𝑥𝜋 = (𝑥𝜋(𝑖))𝑖∈𝑁 . A SMR is anonymous

if 𝑛 is odd or if 𝑛 is even and its tie-breaking rule is anonymous, i.e., symmetric in its 𝑛 variables.

A WMR with nonnegative weights is anonymous if and only if it is an anonymous SMR.

The following characterization of WMRs, which is immediate from the definition, plays an

important role in the subsequent analysis.

Lemma 1. A voting rule 𝜙 ∈ Φ is a WMR with a weight vector 𝑤 ∈ R𝑛 if and only if

𝜙(𝑥)
∑
𝑖∈𝑁

𝑤𝑖𝑥𝑖 ≥ 0 for all 𝑥 ∈ X.

A voting rule 𝜙 ∈ Φ is a WMR with a weight vector 𝑤 ∈ R𝑛 allowing no ties if and only if

𝜙(𝑥)
∑
𝑖∈𝑁

𝑤𝑖𝑥𝑖 > 0 for all 𝑥 ∈ X. (2)

This lemma states that 𝜙 is a WMR allowing no ties (allowing ties) if and only if the

corresponding weighted sum of 𝜙(𝑥)𝑥𝑖 over 𝑖 ∈ 𝑁 is positive (nonnegative) for all 𝑥 ∈ X

(because the left-hand side of the inequality is
∑

𝑖∈𝑁 𝑤𝑖 (𝜙(𝑥)𝑥𝑖)).

Note that a weight vector 𝑤 representing a WMR is a solution to the system of linear

inequalities in Lemma 1. This observation leads us to the next lemma, which shows that the set

of WMRs with nonnegative weights (i.e., 𝑤𝑖 ≥ 0 for all 𝑖 ∈ 𝑁) coincides with that with positive

weights (i.e., 𝑤𝑖 > 0 for all 𝑖 ∈ 𝑁) if there are no ties.

8For an axiomatic foundation of weighted majority rules, see Fishburn (1973), Fishburn and Gehrlein (1977),

Nitzan and Paroush (1981), Einy and Lehrer (1989), and Taylor and Zwicker (1992) among others.
9We allow negative weights, which appear in Proposition 5.
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Lemma 2. A WMR with nonnegative weights allowing no ties is represented as a WMR with

positive weights allowing no ties.

Proof. Let 𝜙 be a WMR allowing no ties. By Lemma 1, the set of all weight vectors representing

𝜙 is 𝑊 ≡ {𝑤 ∈ R𝑛 :
∑

𝑖∈𝑁 𝑤𝑖 (𝜙(𝑥)𝑥𝑖) > 0 for all 𝑥 ∈ X}, which is an open convex polyhedron.

If there exists a nonnegative weight vector representing 𝜙, then𝑊 contains a nonnegative vector,

so 𝑊 also contains a positive vector. □

3 Voting under uncertainty

Assume that 𝑥 ∈ X is randomly drawn according to a probability distribution 𝑝 ∈ Δ(X) ≡

{𝑝′ ∈ RX+ :
∑

𝑥∈X 𝑝′(𝑥) = 1}. For a deterministic voting rule 𝜙 ∈ Φ, let

𝑝(𝜙(𝑥) = 𝑥𝑖) ≡ 𝑝({𝑥 ∈ X : 𝜙(𝑥) = 𝑥𝑖}) =
∑

𝑥∈X:𝜙(𝑥)=𝑥𝑖
𝑝(𝑥)

be the probability that 𝑖’s choice agrees with the collective decision, which is referred to as

responsiveness or the Rae index (Rae, 1969). It is calculated as

𝑝(𝜙(𝑥) = 𝑥𝑖) = (𝐸𝑝 [𝜙(𝑥)𝑥𝑖] + 1)/2 (3)

because

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] =
∑

𝑥:𝜙(𝑥)=𝑥𝑖
𝑝(𝑥) −

∑
𝑥:𝜙(𝑥)≠𝑥𝑖

𝑝(𝑥) = 2𝑝(𝜙(𝑥) = 𝑥𝑖) − 1. (4)

An individual is assumed to vote sincerely and prefer a voting rule with higher responsiveness

because he or she expects that a favorable alternative is more likely to be chosen. A discussion

and justification of these assumptions appear in Online Appendix A.10

We consider the following Pareto order over Φ. We say that a voting rule 𝜙 ∈ Φ is weakly

Pareto-preferred to 𝜙′ ∈ Φ under 𝑝 ∈ Δ(X) if 𝑝(𝜙(𝑥) = 𝑥𝑖) ≥ 𝑝(𝜙′(𝑥) = 𝑥𝑖) for all 𝑖 ∈ 𝑁 .

Similarly, we say that 𝜙 is Pareto-preferred to 𝜙′ under 𝑝 ∈ Δ(X) if 𝑝(𝜙(𝑥) = 𝑥𝑖) ≥ 𝑝(𝜙′(𝑥) =

𝑥𝑖) for all 𝑖 ∈ 𝑁 with strict inequality holding for at least one individual, and that 𝜙 is strictly

Pareto-preferred to 𝜙′ under 𝑝 ∈ Δ(X) if 𝑝(𝜙(𝑥) = 𝑥𝑖) > 𝑝(𝜙′(𝑥) = 𝑥𝑖) for all 𝑖 ∈ 𝑁 .

10We give two alternative definitions of robustness. Redefining robustness as a requirement for a voting

mechanism, where individuals can vote insincerely, we show that sincere voting is weakly dominant for every

individual if the mechanism satisfies robustness. Redefining robustness using the expected utility of individuals,

we provide justification for the original definition which is based upon responsiveness.
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Imagine that a social planner proposes a voting rule 𝜙 ∈ Φ such that the responsiveness of

every individual is less than or equal to one-half:

𝑝(𝜙(𝑥) = 𝑥𝑖) ≤ 1/2 for all 𝑖 ∈ 𝑁. (5)

The collective decision under 𝜙 reflects minority preferences on average. Moreover, there exists

a voting rule that is weakly Pareto-preferred to 𝜙, which is shown to be the inverse rule −𝜙 in

the next lemma.

Lemma 3. A deterministic voting rule 𝜙 ∈ Φ satisfies (5) if and only if the inverse rule −𝜙 is

weakly Pareto-preferred to 𝜙 under 𝑝; that is,

𝑝((−𝜙)(𝑥) = 𝑥𝑖) ≥ 𝑝(𝜙(𝑥) = 𝑥𝑖) for all 𝑖 ∈ 𝑁. (6)

Proof. This lemma is an immediate consequence of 𝑝(𝜙(𝑥) = 𝑥𝑖)+𝑝((−𝜙) (𝑥) = 𝑥𝑖) = 𝑝(𝜙(𝑥) =

𝑥𝑖) + 𝑝(𝜙(𝑥) = −𝑥𝑖) = 1. □

The above discussion implies that the social planner regards it as a minimum requirement for

a voting rule that the responsiveness of at least one individual should be greater than one-half.

In fact, this requirement is considered as minimum because, even if 𝜙 satisfies it, there may

exist a deterministic voting rule other than the inverse rule that is weakly Pareto-preferred to 𝜙.

If the probability distribution of preferences is unknown, evaluating the responsiveness is

impossible. Then, the collective worst-case scenario for adopting 𝜙 is that the true responsive-

ness of every individual is less than or equal to one-half, or equivalently, the inverse rule of 𝜙 is

weakly Pareto-preferred to 𝜙 under the true probability distribution. We say that 𝜙 is robustly

undominated by the inverse rule, or robust for short, if the individuals can avoid this worst-case

scenario whatever the true probability distribution is.11

Definition 1. A deterministic voting rule 𝜙 ∈ Φ is robust if the inverse rule of 𝜙 is not

weakly Pareto-preferred to 𝜙 under any 𝑝 ∈ Δ(X), or equivalently, for each 𝑝 ∈ Δ(X), the

responsiveness of at least one individual is strictly greater than one-half.

For example, a WMR with nonnegative weights is robust if there are no ties. In fact,

by Lemma 1,
∑

𝑖∈𝑁 𝑤𝑖𝐸𝑝 [𝜙(𝑥)𝑥𝑖] > 0 for all 𝑝 ∈ Δ(X), so there exists 𝑖 ∈ 𝑁 such that

𝑤𝑖𝐸𝑝 [𝜙(𝑥)𝑥𝑖] > 0, i.e., 𝑝(𝜙(𝑥) = 𝑥𝑖) > 1/2.

11In Section 6, we discuss several extensions of Definition 1.
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As shown in the next lemma, a robust rule is robustly undominated not only by the inverse

rule but also by any other deterministic voting rule. In Section 5, we show that a robust rule is

robustly undominated by any other random voting rule as well using the main result reported in

Section 4.

Lemma 4. A deterministic voting rule 𝜙 ∈ Φ is robust if and only if, for any 𝑝 ∈ Δ(X) and

𝜙′ ∈ Φ such that 𝜙′ is weakly Pareto-preferred to 𝜙 under 𝑝, we must have 𝜙′(𝑥) = 𝜙(𝑥) for all

𝑥 ∈ X with 𝑝(𝑥) > 0.

Proof. It is enough to show the “only if” part. Seeking a contradiction, suppose that 𝜙 is

robust and there exist 𝑝 and 𝜙′ such that 𝜙′ is weakly Pareto-preferred to 𝜙 under 𝑝 and

𝑝({𝑥 ∈ X : 𝜙′(𝑥) ≠ 𝜙(𝑥)}) > 0. Define 𝑝′ ∈ Δ(X) such that

𝑝′(𝑥) =

𝑝(𝑥)/∑𝑥 ′:𝜙′(𝑥 ′)≠𝜙(𝑥 ′) 𝑝(𝑥′) if 𝜙(𝑥) ≠ 𝜙′(𝑥),

0 otherwise.

Then,

𝐸𝑝′ [𝜙(𝑥)𝑥𝑖] − 𝐸𝑝′ [(−𝜙)(𝑥)𝑥𝑖] = (𝐸𝑝 [𝜙(𝑥)𝑥𝑖] − 𝐸𝑝 [(𝜙′(𝑥))𝑥𝑖])/
∑

𝑥 ′:𝜙(𝑥 ′)≠𝜙′(𝑥 ′)
𝑝(𝑥′) ≤ 0

for all 𝑖 ∈ 𝑁 . Thus, by (3), the inverse rule −𝜙 is weakly Pareto-preferred to 𝜙 under 𝑝′, which

is a contradiction to the robustness of 𝜙. □

By Lemma 4, a voting rule 𝜙 is not robust if there exists 𝑝 ∈ Δ(X) such that 𝜙 is not maximal

with respect to the Pareto order over Φ under 𝑝, which is the worst-case Pareto-ranking of 𝜙.

Thus, in our criterion of robustness, each voting rule is evaluated based upon the worst-case

Pareto-ranking.

We also consider a weaker version of robustness by considering the following more severe

collective worst-case scenario for adopting 𝜙: the true responsiveness of every individual is

strictly less than one-half, or equivalently, the inverse rule of 𝜙 is strictly Pareto-preferred to 𝜙

under the true probability distribution. We say that 𝜙 is weakly robust if the individuals can

avoid this worst-case scenario whatever the true distribution is.

Definition 2. A deterministic voting rule 𝜙 ∈ Φ is weakly robust if the inverse rule of 𝜙 is

not strictly Pareto-preferred to 𝜙 under any 𝑝 ∈ Δ(X), or equivalently, for each 𝑝 ∈ Δ(X), the

responsiveness of at least one individual is greater than or equal to one-half.
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If 𝜙 ∈ Φ is weakly robust but not robust, there exists 𝑝 ∈ Δ(X) such that max𝑖∈𝑁 𝑝(𝜙(𝑥) =

𝑥𝑖) = 1/2. If such 𝑝 is the true probability distribution, a collective decision is at best neutral to

each individual’s choice on average, which is never the case with robust rules.

For example, a WMR with nonnegative weights is weakly robust even if there are ties. In

fact, by Lemma 1,
∑

𝑖∈𝑁 𝑤𝑖𝐸𝑝 [𝜙(𝑥)𝑥𝑖] ≥ 0 for all 𝑝 ∈ Δ(X), so there exists 𝑖 ∈ 𝑁 such that

𝑤𝑖 > 0 and 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] ≥ 0, i.e., 𝑝(𝜙(𝑥) = 𝑥𝑖) ≥ 1/2.

A weakly robust rule also has the property analogous to that of a robust rule in Lemma 4.

Lemma 5. A deterministic voting rule 𝜙 is weakly robust if and only if, for any 𝑝 ∈ Δ(X), no

deterministic voting rule is strictly Pareto-preferred to 𝜙 under 𝑝.

Proof. The proof is essentially the same as that of Lemma 4, so it is omitted. □

The following numerical example illustrates the requirement of robustness.

Example 1. Assume that 𝑛 = 5 and let 𝜙 be a SMR with veto power of individual 1:

𝜙(𝑥) =

−𝑥1 if 𝑥 ∈ A,

𝑥1 otherwise,
(7)

where A ≡ {𝑥 ∈ X : 𝑥1 = 1, #{𝑖 : 𝑥𝑖 = 1} ≤ 2}. Then, 𝜙 is not weakly robust because the

inverse rule −𝜙 is strictly Pareto-preferred to 𝜙 under 𝑝 ∈ Δ(X) given by

𝑝(𝑥) =



1/16 if 𝑥 = (1,−1,−1,−1,−1),

2/16 if 𝑥 ∈ {(1, 1,−1,−1,−1), (1,−1, 1,−1,−1), (1,−1,−1, 1,−1), (1,−1,−1,−1, 1)},

7/16 if 𝑥 = (−1, 1, 1, 1, 1),

0 otherwise.

In fact, 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = 7/16−9/16 = −1/8 < 0 for all 𝑖, and thus 𝐸𝑝 [−𝜙(𝑥)𝑥𝑖] = −𝐸𝑝 [𝜙(𝑥)𝑥𝑖] >

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] for all 𝑖. This implies that 𝜙 does not satisfy the requirement of weak robustness as

well as that of robustness by (3).

4 Main results

In this section, we present our main result characterizing robust and weakly robust rules. The

results are stated and discussed in Section 4.1. The proofs are given in Section 4.2.

11



4.1 Characterizations

First, we characterize robust rules. A WMR with nonnegative weights allowing no ties is robust

as discussed in Section 3. Our first main result establishes that every robust rule must be such a

WMR, which is robustly undominated not only by any other deterministic voting rule but also

by any other random voting rule as will be discussed in the next section.

Proposition 1. A deterministic voting rule is robust if and only if it is a WMR with nonnegative

weights such that there are no ties.

Next, we characterize weakly robust rules. A WMR with nonnegative weights is weakly

robust even if there are ties as discussed in Section 3. Our second main result establishes that

every weakly robust rule must be such a WMR.

Proposition 2. A deterministic voting rule is weakly robust if and only if it is a WMR with

nonnegative weights.

As a corollary of Proposition 1, we characterize robust anonymous rules. If 𝑛 is odd, a

SMR is the unique rule that is both robust and anonymous. In Appendix B.1, we give another

characterization of a SMR with odd 𝑛 using a stronger version of robustness. However, if

𝑛 is even, no anonymous rule is robust. That is, there is a trade-off between robustness and

anonymity.

Corollary 3. Suppose that 𝑛 is odd. Then, a voting rule is robust and anonymous if and only if

it is a SMR. Suppose that 𝑛 is even. Then, no voting rule is both robust and anonymous.

Proof. A voting rule is robust and anonymous if and only if it is an anonymous WMR with

nonnegative weights allowing no ties, which is a SMR with odd 𝑛. □

Corollary 3 implies that an anonymous rule is not robust if 𝑛 is even or if it is not a SMR.

In Appendix A, we introduce robustness of random voting rules and demonstrate that not only

anonymous deterministic rules but also anonymous random rules cannot be robust when 𝑛 is

even.

For example, a supermajority rule is not robust because it is anonymous. To illustrate it by a

numerical example, consider a two-thirds rule with a very large number of individuals. Suppose

that 𝑥𝑖 = 1 with probability 𝑝 ∈ (1/2, 2/3) independently and identically for each 𝑖 ∈ 𝑁 . By the
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law of large numbers, the group decision is −1 with probability close to one, so responsiveness

of each individual is close to 1 − 𝑝 < 1/2, which implies that this rule is not robust.12

As a corollary of Proposition 2, we characterize weakly robust anonymous rules. Although

no anonymous rule is robust when 𝑛 is even, there exists a weakly robust anonymous rule

regardless of 𝑛, which is an anonymous SMR (a SMR with an anonymous tie-breaking rule).

Corollary 4. A voting rule is weakly robust and anonymous if and only if it is an anonymous

SMR.

Proof. A voting rule is weakly robust and anonymous if and only if it is an anonymous WMR

with nonnegative weights, which is an anonymous SMR. □

To illustrate the difference between robustness and weak robustness as well as the trade-off

between robustness and anonymity, suppose that 𝑛 is even and consider SMRs. By Proposition 1,

a SMR with some tie-breaking rule is robust if and only if it is represented as a WMR allowing

no ties and, by Corollary 3, such a SMR is nonanonymous. For example, a SMR with a casting

(tie-breaking) vote is a robust nonanonymous rule. To see this, we consider two cases. First,

assume that the presiding officer with a casting vote is a member of a group of 𝑛 individuals.

This rule is equivalent to a WMR such that the presiding officer’s weight is slightly greater than

the others’ weights. Next, assume that the presiding officer is not a member of a group of 𝑛

individuals and that he or she votes only when there is a tie. This rule is equivalent to a WMR

with 𝑛 + 1 individuals including the presiding officer such that the presiding officer’s weight is

very close to zero. Each of these WMRs does not have ties and is robust

On the other hand, a SMR with any tie-breaking rule is weakly robust by Proposition 2. In

particular, a SMR with the status quo tie-breaking rule (i.e., the status quo is followed whenever

there is a tie) is a weakly robust anonymous rule, but it is not robust by Corollary 3.

4.2 Proofs

This section provides the proofs of Propositions 1 and 2. In the proofs, we use the following

inequality symbols. For vectors 𝜉 and 𝜂, we write 𝜉 ≥ 𝜂 if 𝜉𝑖 ≥ 𝜂𝑖 for each 𝑖, 𝜉 > 𝜂 if 𝜉𝑖 ≥ 𝜂𝑖

for each 𝑖 and 𝜉 ≠ 𝜂, and 𝜉 ≫ 𝜂 if 𝜉𝑖 > 𝜂𝑖 for each 𝑖.

12Even if 𝑛 is not so large, we can find 𝑝 ∈ Δ(X) such that the responsiveness of every individual is less than or

equal to one-half.

13



We enumerate elements in X as {𝑥 𝑗 } 𝑗∈𝑀 , where 𝑀 ≡ {1, . . . , 𝑚} is an index set with

𝑚 ≡ 2𝑛. Consider an 𝑛 × 𝑚 matrix

𝐿 = [𝑙𝑖 𝑗 ]𝑛×𝑚 =
[
𝜙(𝑥 𝑗 )𝑥 𝑗

𝑖

]
𝑛×𝑚

.

Note that 𝑙𝑖 𝑗 equals +1 if 𝑖’s choice agrees with the collective decision and −1 otherwise. Using

this matrix, we can restate the conditions in Proposition 1 as follows.

(a) By Lemma 1, a voting rule 𝜙 is a WMR with nonnegative weights allowing no ties if and

only if there exists 𝑤 = (𝑤𝑖)𝑖∈𝑁 ≥ 0 such that∑
𝑖∈𝑁

𝑤𝑖𝑙𝑖 𝑗 =
∑
𝑖∈𝑁

𝑤𝑖
(
𝜙(𝑥 𝑗 )𝑥 𝑗

𝑖

)
> 0

for each 𝑗 ∈ 𝑀 , or equivalently, 𝑤⊤𝐿 ≫ 0.

(b) By definition and (4), a voting rule is not robust if and only if there exists 𝑝 = (𝑝 𝑗 ) 𝑗∈𝑀 > 0

such that ∑
𝑗∈𝑀

𝑙𝑖 𝑗 𝑝 𝑗 =
∑

𝑗 :𝜙(𝑥 𝑗 )=𝑥 𝑗
𝑖

𝑝 𝑗 −
∑

𝑗 :𝜙(𝑥 𝑗 )≠𝑥 𝑗
𝑖

𝑝 𝑗 ≤ 0

for each 𝑖 ∈ 𝑁 , or equivalently, 𝐿𝑝 ≤ 0.

Proposition 1 states that exactly one of (a) and (b) holds. The following theorem of

alternatives due to von Neumann and Morgenstern (1944)13 guarantees that this is true. The

same result also appears in the work of Gale (1960, Theorem 2.10) as a corollary of Farkas’

lemma.

Lemma 6. Let 𝐴 be an 𝑛 × 𝑚 matrix. Exactly one of the following alternatives holds.

• There exists 𝜉 ∈ R𝑛 satisfying

𝜉⊤𝐴 ≫ 0, 𝜉 ≥ 0.

• There exists 𝜂 ∈ R𝑚 satisfying

𝐴𝜂 ≤ 0, 𝜂 > 0.

Proof of Proposition 1. Plug 𝐿, 𝑤, and 𝑝 into 𝐴, 𝜉, and 𝜂 in Lemma 6, respectively. Then,

Lemma 6 implies that exactly one of (a) and (b) holds. □

13von Neumann and Morgenstern (1944) use this result to prove the minimax theorem.
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We can interpret Lemma 6 as a corollary of the fundamental theorem of asset pricing,14

which is equivalent to Farkas’ lemma. Thus, we can explain why Proposition 1 is true in terms

of arbitrage-free pricing in an imaginary asset market, which is discussed in Appendix C.15

We can prove Proposition 2 similarly by restating the conditions in the proposition as follows.

(a′) By Lemma 1, a voting rule 𝜙 is a WMR with nonnegative weights if and only if there exists

𝑤 = (𝑤𝑖)𝑖∈𝑁 > 0 such that ∑
𝑖∈𝑁

𝑤𝑖𝑙𝑖 𝑗 =
∑
𝑖∈𝑁

𝑤𝑖
(
𝜙(𝑥 𝑗 )𝑥 𝑗

𝑖

)
≥ 0

for each 𝑗 ∈ 𝑀 , or equivalently, 𝑤⊤𝐿 ≥ 0.

(b′) By definition, a voting rule is not weakly robust if and only if there exists 𝑝 = (𝑝 𝑗 ) 𝑗∈𝑀 > 0

such that ∑
𝑗∈𝑁

𝑙𝑖 𝑗 𝑝 𝑗 =
∑

𝑗 :𝜙(𝑥 𝑗 )=𝑥 𝑗
𝑖

𝑝 𝑗 −
∑

𝑗 :𝜙(𝑥 𝑗 )≠𝑥 𝑗
𝑖

𝑝 𝑗 < 0

for each 𝑖 ∈ 𝑁 , or equivalently, 𝐿𝑝 ≪ 0.

Proposition 2 states that exactly one of (a′) and (b′) holds. To prove it, we use Lemma 6

again, but in another way.

Proof of Proposition 2. Plug−𝐿⊤, 𝑝, and𝑤 into 𝐴, 𝜉, and 𝜂 in Lemma 6, respectively, where we

replace (𝑛, 𝑚) with (𝑚, 𝑛). Then, Lemma 6 implies that exactly one of (a′) and (b′) holds. □

5 Robustness vs. efficiency

Rae (1969) and Taylor (1969) were the first to use responsiveness to characterize voting rules,

followed by Straffin (1977) and Fleurbaey (2008). Using their characterization, we show that

a robust rule is robustly undominated not only by any other deterministic voting rule but also

by any other random voting rule. We also clarify the connection between the requirement of

robustness and that of efficiency.

14For details on the fundamental theorem of asset pricing, see Dybvig and Ross (2003, 2008) and references

therein.
15Gilboa and Samuelson (2021) ask which collections of uncertain-act evaluations can be simultaneously

justified under the maxmin expected utility criterion and draw connections to the fundamental theorem of asset

pricing.
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Note that, by Lemma 1, 𝜙 ∈ Φ is a WMR with a weight vector 𝑤 ∈ R𝑛 if and only if

𝜙(𝑥)∑𝑖∈𝑁 𝑤𝑖𝑥𝑖 = |𝜙(𝑥)∑𝑖∈𝑁 𝑤𝑖𝑥𝑖 | for all 𝑥 ∈ X, which is equivalent to the following inequality:

for all 𝜙′ ∈ Φ and 𝑥 ∈ X,

𝜙(𝑥)
∑
𝑖∈𝑁

𝑤𝑖𝑥𝑖 =

�����𝜙(𝑥)∑
𝑖∈𝑁

𝑤𝑖𝑥𝑖

����� =
�����𝜙′(𝑥)∑

𝑖∈𝑁
𝑤𝑖𝑥𝑖

����� ≥ 𝜙′(𝑥)
∑
𝑖∈𝑁

𝑤𝑖𝑥𝑖 . (8)

This is true if and only if, for all 𝑝 ∈ Δ(X),∑
𝑖∈𝑁

𝑤𝑖𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = max
𝜙′∈Φ

∑
𝑖∈𝑁

𝑤𝑖𝐸𝑝 [𝜙′(𝑥)𝑥𝑖], (9)

or equivalently, ∑
𝑖∈𝑁

𝑤𝑖𝑝(𝜙(𝑥) = 𝑥𝑖) = max
𝜙′∈Φ

∑
𝑖∈𝑁

𝑤𝑖𝑝(𝜙′(𝑥) = 𝑥𝑖). (10)

That is, a necessary and sufficient condition for a voting rule to be a WMR is that it maximizes

the corresponding weighted sum of responsiveness over all voting rules for each 𝑝 ∈ Δ(X).

This result is summarized in the following proposition due to Fleurbaey (2008),16 where the

sufficient condition is weaker.17

Proposition 5. If 𝜙 is a WMR with a weight vector 𝑤, then (10) holds for each 𝑝 ∈ Δ(X). For

fixed 𝑝 ∈ Δ(X)◦ ≡ {𝑝 ∈ Δ(X) : 𝑝(𝑥) > 0 for each 𝑥 ∈ X}, where every 𝑥 is possible, if (10)

holds, then 𝜙 is a WMR with a weight vector 𝑤.

We call the above result the Rae-Taylor-Fleurbaey (RTF) theorem because it generalizes the

Rae-Taylor theorem18 which focuses on a SMR. Note that a WMR in the RTF theorem can have

negative weights. In Appendix B.2, we characterize a WMR with possibly negative weights by

introducing a further weaker version of robustness.

The normative implication of the RTF theorem is efficiency of WMRs in the set of random

voting rules under a fixed probability distribution.19

Definition 3. Fix 𝑝 ∈ Δ(X)◦. A deterministic voting rule 𝜙 ∈ Φ is strictly efficient if any other

random voting rule is not weakly Pareto-preferred to 𝜙 in terms of responsiveness under 𝑝. A

16See also Brighouse and Fleurbaey (2010), who discuss the implication of this result for democracy.
17To see why a weaker condition suffices, suppose that 𝜙 is not a WMR. Then, (8) does not hold for some 𝜙′ ∈ Φ

and 𝑥 ∈ X, which contradicts (9) and (10) for each 𝑝 ∈ Δ(X)◦.
18See Rae (1969), Taylor (1969), Straffin (1977), and references in Fleurbaey (2008).
19This issue is not formally discussed in Fleurbaey (2008). Instead, Fleurbaey (2008) considers the optimality

of a WMR by assuming that 𝑤𝑖 is proportional to 𝑖’s utility, where the weighted sum of responsiveness is the total

sum of expected utilities.
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deterministic voting rule 𝜙 ∈ Φ is efficient if any random voting rule is not Pareto-preferred to

𝜙 in terms of responsiveness under 𝑝. A deterministic voting rule 𝜙 ∈ Φ is weakly efficient if

any random voting rule is not strictly Pareto-preferred to 𝜙 in terms of responsiveness under 𝑝.

It should be noted that, even if no deterministic voting rule is Pareto-preferred to 𝜙, there

may exist a random voting rule that is Pareto-preferred to 𝜙, which will be demonstrated later.

Using the RTF theorem, we can obtain the following normative characterizations of WMRs.

Proposition 6. Fix 𝑝 ∈ Δ(X)◦. A deterministic voting rule is strictly efficient if and only if it is

a WMR with positive weights such that there are no ties. A deterministic voting rule is efficient

if and only if it is a WMR with positive weights. A deterministic voting rule is weakly efficient if

and only if it is a WMR with nonnegative weights.

Proof. To the best of the authors’ knowledge, the proofs as well as the above formal statements

have never appeared in the literature. We give the proofs in Appendix E. □

Propositions 1 and 6 characterize a WMR using responsiveness. In particular, the class of

robust rules coincides with that of strictly efficient rules.20 This implies that a robust rule is

robustly undominated by any other random voting rule.

Let us elaborate on the difference between efficiency and robustness. Note that if a voting

rule 𝜙 is a WMR with nonnegative weights, then, under every 𝑝 ∈ Δ(X), no random voting

rule is strictly Pareto-preferred to 𝜙, as implied by (9). The converse is also true, but a weaker

condition suffices, which is each of weak efficiency and weak robustness. Weak efficiency

requires that, under a fixed 𝑝 ∈ Δ(X)◦, any random voting rule is not strictly Pareto-preferred

to 𝜙. Thus, we need to consider all random voting rules (i.e., all probability distributions

of voting rules) to check weak efficiency. On the other hand, weak robustness requires that,

under every 𝑝 ∈ Δ(X), the inverse rule of 𝜙 is not strictly Pareto-preferred to 𝜙. Thus, we

need to consider all probability distributions of decision profiles to check weak robustness.

The following table summarizes the difference between the two sufficient conditions by listing

possible combinations of X, Y, and Z in the sentence: “a voting rule 𝜙 is X if Y is not strictly

20A robust rule is a WMR with nonnegative weights allowing no ties, which can be represented as a WMR with

positive weights allowing no ties by Lemma 2.
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Pareto-preferred to 𝜙 under Z.”

X Y Z

weakly efficient any 𝜙 ∈ Δ(Φ) fixed 𝑝 ∈ Δ(X)◦

weakly robust the inverse rule −𝜙 ∈ Φ any 𝑝 ∈ Δ(X)

We demonstrate the above difference using a numerical example.

Example 2. Let 𝜙 be the voting rule discussed in Example 1, where we demonstrate that 𝜙 is

not weakly robust because the inverse rule is strictly Pareto-preferred to 𝜙 under some 𝑝. Here,

we demonstrate that 𝜙 is not weakly efficient under some 𝑝 because there exists a random voting

rule that is strictly Pareto-preferred to 𝜙. Fix 𝑝 ∈ Δ(X) with

𝑝(𝑥) =

𝛼 if 𝑥 ∈ A,

𝛽 otherwise,
(11)

where 0 < 𝛼 < 1/140 and 𝛽 = (1 − 5𝛼)/27. Then, no deterministic voting rule is Pareto-

preferred to 𝜙 under 𝑝, as shown in Appendix D. However, 𝜙 is not weakly efficient because

the following random voting rule 𝜙 is strictly Pareto-preferred to 𝜙 under 𝑝:

𝜙(𝑥) =


−1 + 𝛿 if 𝑥1 = −1 and 𝑥𝑖 = 1 for all 𝑖 ≠ 1,

−1 + 𝛾 if 𝑥1 = 1 and #{𝑖 : 𝑥𝑖 = 1} = 2,

𝜙(𝑥) otherwise,

where 𝛿, 𝛾 ∈ (0, 1) and 𝛽𝛿/(4𝛼) < 𝛾 < 𝛽𝛿/(2𝛼). In fact,

𝐸𝑝 [𝜙′(𝑥)𝑥1] − 𝐸𝑝 [𝜙(𝑥)𝑥1] = −𝛽𝛿 + 4𝛼𝛾 > 0,

𝐸𝑝 [𝜙′(𝑥)𝑥𝑖] − 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = 𝛽𝛿 − 2𝛼𝛾 > 0 for each 𝑖 ≠ 1.

Thus, 𝜙 does not satisfy the requirement of weak efficiency by (3).

Before closing this section, we emphasize that our characterization of WMRs is not a

restatement of the RTF theorem. As discussed in Section 3, it is obvious that a WMR is robust.

Thus, Proposition 6 implies that a strictly efficient rule is robust. However, neither Proposition

6 nor the RTF theorem says anything about whether a robust rule is strictly efficient. Our

contribution is to identify the set of all robust rules, which is not implied by the RTF theorem.
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6 Discussion

In this section, we discuss several extensions of Definition 1 and also compare our criterion

with other criteria.

Random voting rules

We focus on deterministic voting rules in Definition 1, but we can also apply the same require-

ment to random voting rules. This requirement is very weak for random voting rules because

robust random rules do not have the property in Lemma 4; that is, some deterministic voting

rule can be Pareto-preferred to a robust random rule under some probability distribution of

preferences. In Appendix A, we demonstrate it and characterize the class of robust random

rules.

Heterogeneous priors

We adopt the notion of Pareto dominance under common beliefs in Definition 1. This is because

Pareto dominance under heterogeneous beliefs is not so normatively compelling as discussed in

the introduction. Moreover, when we adopt Pareto dominance under heterogeneous beliefs, the

stronger version of robustness implies dictatorship. Let us say that a voting rule 𝜙 ∈ Φ is robust

under heterogeneous priors if, for any 𝑝1, . . . , 𝑝𝑛 ∈ Δ(X), it holds that 𝑝𝑖 (𝜙(𝑥) = 𝑥𝑖) > 1/2 for

at least one 𝑖 ∈ 𝑁 . We show that there exists a dictator, i.e., individual 𝑖 ∈ 𝑁 with 𝜙(𝑥) = 𝑥𝑖

for all 𝑥 ∈ X. Seeking a contradiction, suppose that no individual is a dictator. Then, for

each 𝑖 ∈ 𝑁 , there exists 𝑥𝑖 ∈ X and 𝑝𝑖 ∈ Δ(X) such that 𝜙(𝑥𝑖) ≠ 𝑥𝑖𝑖 and 𝑝𝑖 (𝑥𝑖) = 1; that is,

𝑝𝑖 (𝜙(𝑥𝑖) = 𝑥𝑖𝑖) = 0 ≤ 1/2. Therefore, 𝜙 is not robust under heterogeneous priors. On the other

hand, if individual 𝑖 is a dictator, then 𝑝(𝜙(𝑥) = 𝑥𝑖) = 1 > 1/2 for all 𝑝 ∈ Δ(X), so 𝜙 is robust

under heterogeneous priors.

A proper subset of Δ(X)

We take account of all beliefs in Δ(X) in Definition 1 because a social planner is assumed to be

very conservative having no information about the true distribution. That is, our criterion is a

comprehensively belief-free criterion. However, a proper subset 𝑃 ⊊ Δ(X) may be considered

to be reasonable in some cases. Then, we can consider the following weaker requirement: we say
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that 𝜙 ∈ Φ is 𝑃-robust if the inverse rule−𝜙 is not weakly Pareto-preferred to 𝜙 under any 𝑝 ∈ 𝑃.

This criterion is similar to, but different from, the belief-neutral Pareto criterion introduced by

Brunnermeier et al. (2014) in their study of financial markets. To translate it into our model,

assume that individuals’ subjective beliefs 𝑝1, . . . , 𝑝𝑛 ∈ Δ(X) are observable to a social planner

and the set of reasonable beliefs is the convex hull of them, i.e., co {𝑝1, . . . , 𝑝𝑛}. Under this

assumption, 𝜙 is said to be belief-neutral efficient if it is efficient under any 𝑝 ∈ co {𝑝1, . . . , 𝑝𝑛};

that is, any random voting rule is not Pareto-preferred to 𝜙 under any 𝑝 ∈ co {𝑝1, . . . , 𝑝𝑛}. Note

that, by the RTF theorem, 𝜙 is belief-neutral efficient if and only if it is a WMR with positive

weights. Contrastingly, in 𝑃-robustness with 𝑃 = co {𝑝1, . . . , 𝑝𝑛}, the inverse rule −𝜙 is not

weakly Pareto-preferred to 𝜙 under any 𝑝 ∈ co {𝑝1, . . . , 𝑝𝑛}. In Online Appendix B, we

demonstrate that a 𝑃-robust rule is not necessarily a WMR, and we also characterize the class

of 𝑃-robust rules.

The maximin criterion

If a social planner has a cardinal utility function over the set of voting rules rather than

the Pareto order, the planner can apply the maximin criterion to obtain the optimal rule.

However, there may exist many sensible utility functions, and the optimal rule depends upon

the choice of them; that is, it may be difficult to characterize the class of all WMRs using a

single utility function. For example, let the weighted sum of each individual’s responsiveness,

𝑊 (𝜙, 𝑝) ≡ ∑
𝑖∈𝑁 𝑤𝑖𝑝(𝜙(𝑥) = 𝑥𝑖), be the planner’s utility function. We say that a voting

rule 𝜙 ∈ Φ satisfies the maximin criterion if 𝜙 ∈ arg max𝜙′∈Φ min𝑝∈Δ(X) 𝑊 (𝜙′, 𝑝). Then,

a voting rule is a WMR with the same weights 𝑤 ≡ (𝑤𝑖)𝑖∈𝑁 , which is denoted by 𝜙𝑤, if

and only if it satisfies the maximin criterion. Let us prove it here. By Lemma 1 and (3),

𝜙𝑤 achieves the following maximum of 𝑊 (𝜙, 𝑝) for each 𝑝 ∈ Δ(X): max𝜙∈Φ𝑊 (𝜙, 𝑝) =

max𝜙∈Φ(𝐸𝑝 [𝜙(𝑥)
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖] +
∑

𝑖∈𝑁 𝑤𝑖)/2 = (𝐸𝑝 [|
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖 |] +
∑

𝑖∈𝑁 𝑤𝑖)/2, which implies

that 𝜙𝑤 satisfies the maximin criterion. Conversely, if 𝜙 satisfies the maximin criterion, then 𝜙

must be a WMR with the same weights 𝑤 because min𝑝∈Δ(X) 𝑊 (𝜙𝑤, 𝑝) = min𝑝∈Δ(X) 𝑊 (𝜙, 𝑝),

and thus min𝑝∈Δ(X) 𝐸𝑝 [𝜙𝑤 (𝑥)
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖] = min𝑝∈Δ(X) 𝐸𝑝 [𝜙(𝑥)
∑

𝑖∈𝑁 𝑤𝑖𝑥𝑖] ≥ 0 by Lemma 1,

which implies that 𝜙 is a WMR with the same weight 𝑤 by Lemma 1 again.
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7 Conclusion

The justification of WMRs and, in particular, SMRs based on efficiency arguments or axiomatic

characterizations has yielded some of the celebrated contributions to the social choice and voting

literature. The two paramount examples rationalizing a SMR within a dichotomous setting are

Condorcet’s jury theorem and May’s theorem,21 where the rationalization of a voting rule is

based on asymptotic (i.e., infinite-individual) probabilistic criteria or deterministic criteria. An

alternative approach based on non-asymptotic (i.e., finite-individual) probabilistic criteria was

pioneered by Rae (1969), who suggested aggregate responsiveness as a meaningful criterion for

evaluating the performance of a voting rule in the constitutional stage, namely, where the veil

of ignorance prevails.

This paper contributes to the latter literature by introducing normative criteria for voting

rules, robustness and weak robustness. Robustness requires that a voting rule should avoid the

worst-case scenario in which the true responsiveness of every individual is less than or equal to

one-half, and weak robustness requires that a voting rule should avoid the worst-case scenario

in which the true responsiveness of every individual is less than one-half. The justification of

the robustness property is based on two arguments: (i) it does not allow the collective decision

to reflect just the minority preferences on average, and (ii) it does not permit Pareto inferiority in

the set of all deterministic voting rules. Because a robust rule is never Pareto inferior under every

common belief, it not only bypasses the problem associated with “spurious unanimity” under

heterogeneous beliefs but also achieves “Pareto-ranking robustness” under common beliefs.

We establish that a voting rule is robust if and only if it is a WMR without ties and that a voting

rule is weakly robust if and only if it is a WMR allowing ties with any tie-breaking rule. We also

find that we face a trade-off between robustness and anonymity when the number of individuals

is even: we must be content with a nonanonymous rule if we require robustness and we must

be content with a weakly robust rule if we require anonymity. Our result and the RTF theorem

(Rae, 1969; Taylor, 1969; Fleurbaey, 2008) have in common that both examine WMRs using

responsiveness. However, the RTF theorem characterizes WMRs as efficient rules achieving

the optimal outcomes, whereas our result characterizes WMRs as robust rules avoiding the

worst outcomes. Hence, our result complements the renowned RTF theorem by providing a

dual characterization of WMRs and, in particular, of SMRs in terms of responsiveness.

21See May (1952), Fishburn (1973), and Dasgupta and Maskin (2008).
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A Robust random voting

In this appendix, we define and characterize a robust random voting rule. Robustness in this

case is a very weak requirement. However, no anonymous random voting rule is robust when

the number of individuals is even.

Recall that a random voting rule is a mapping 𝜙 : X → [−1, 1] assigning a collective

decision 1 with probability (1 + 𝜙(𝑥))/2 and −1 with probability (1 − 𝜙(𝑥))/2 to each 𝑥 ∈ X.

Thus, the conditional responsiveness of individual 𝑖 ∈ 𝑁 given 𝑥 ∈ X is (1 + 𝜙(𝑥))/2 if 𝑥𝑖 = 1

and (1 − 𝜙(𝑥))/2 if 𝑥𝑖 = −1, which is rewritten as (𝜙(𝑥)𝑥𝑖 + 1)/2. Therefore, when 𝑥 ∈ X

is drawn according to 𝑝 ∈ Δ(X), the responsiveness of individual 𝑖 ∈ 𝑁 is calculated as

(𝐸𝑝 [𝜙(𝑥)𝑥𝑖] + 1)/2, which is analogous to (3).

We define a robust random rule by directly applying Definition 1 and provide a characteri-

zation, which is an extension of Proposition 1 to a random voting rule.

Definition A. A random voting rule 𝜙 ∈ Δ(Φ) is robust if, for each 𝑝 ∈ Δ(X), the responsiveness

of at least one individual is strictly greater than one-half, or equivalently, 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] > 0 for at

least one 𝑖 ∈ 𝑁 .

Proposition A. A random voting rule 𝜙 ∈ Δ(Φ) is robust if and only if there exists 𝑤 ∈ R𝑛+
satisfying

𝜙(𝑥) ≷ 0 ⇔
∑
𝑖∈𝑁

𝑤𝑖𝑥𝑖 ≷ 0. (12)

Proof. The proof is essentially the same as that of Proposition 1. Consider an 𝑛 × 𝑚 matrix

�̄� = [𝑙𝑖 𝑗 ]𝑛×𝑚 =
[
𝜙(𝑥 𝑗 )𝑥 𝑗

𝑖

]
𝑛×𝑚

. Then, (12) is rewritten as
∑

𝑖∈𝑁 𝑤𝑖𝑙𝑖 𝑗 =
∑

𝑖∈𝑁 𝑤𝑖
(
𝜙(𝑥 𝑗 )𝑥 𝑗

𝑖

)
> 0

for each 𝑗 ∈ 𝑀 , or equivalently, 𝑤⊤ �̄� ≫ 0. By Lemma 6, this is true if and only if there does not

exist 𝑝 = (𝑝 𝑗 ) 𝑗∈𝑀 > 0 such that �̄� 𝑝 ≤ 0, or equivalently,
∑

𝑗∈𝑀 𝑙𝑖 𝑗 𝑝 𝑗 =
∑

𝑗∈𝑀 𝜙(𝑥 𝑗 )𝑥 𝑗
𝑖 𝑝 𝑗 ≤ 0

for each 𝑖 ∈ 𝑁; that is, 𝜙 is robust. □

Not only a WMR but also many other random voting rules satisfy (12). For example, assume

that 𝑛 is odd and let 𝜙 ∈ Δ(Φ) be a random voting rule such that the collective decision is the

majority’s vote with probability 0.5 + 𝜀, where 0 < 𝜀 < 1/2; that is,

𝜙(𝑥) =

+2𝜀 if

∑
𝑖∈𝑁 𝑥𝑖 > 0,

−2𝜀 if
∑

𝑖∈𝑁 𝑥𝑖 < 0.

Note that 𝜙 satisfies (12) with 𝑤𝑖 = 1 for all 𝑖 ∈ 𝑁 , and thus it is robust. However, 𝜙 can be

dominated by a deterministic voting rule. To see this, let 𝜙 ∈ Φ be a SMR, and let 𝑝 ∈ Δ(X)
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be such that 𝑝(𝑥) = 1 if 𝑥𝑖 = 1 for all 𝑖 ∈ 𝑁 and 𝑝(𝑥) = 0 otherwise. Then, for each 𝑖 ∈ 𝑁 ,

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] − 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = 2𝜀 − 1 < 0, which implies that 𝜙 is strictly Pareto-preferred to 𝜙

under 𝑝 in terms of responsiveness.

Although robustness is a weak requirement for random voting rules, there exists no anony-

mous robust random rule when 𝑛 is even. Let 𝑝 ∈ Δ(X) be such that

𝑝(𝑥) =


1/
( 𝑛
𝑛/2

)
if #{𝑖 : 𝑥𝑖 = 1} = 𝑛/2,

0 otherwise.

Then, for any anonymous random voting rule 𝜙 ∈ Δ(Φ), it holds that 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = 𝐸𝑝 [𝜙(𝑥)𝑥 𝑗 ]

for all 𝑖, 𝑗 ∈ 𝑁 and ∑
𝑖∈𝑁

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = 𝐸𝑝

[
𝜙(𝑥)

∑
𝑖∈𝑁

𝑥𝑖

]
= 0.

This implies that (𝐸𝑝 [𝜙(𝑥)𝑥𝑖] + 1)/2 = 1/2 for all 𝑖 ∈ 𝑁; that is, the responsiveness of every

individual equals one-half. Therefore, 𝜙 is not robust.

B Other robustness concepts

In this appendix, we consider two variants of robustness concepts and characterize them.

B.1 Strong robustness and a SMR

Even if a voting rule is robust and the responsiveness of at least one individual is strictly greater

than one-half, the arithmetic mean of responsiveness of all individuals can be less than one-half,

which implies that the collective decision reflects minority preferences on average. To avoid

this scenario, a voting rule must satisfy the following stronger requirement.

Definition B. A voting rule 𝜙 ∈ Φ is strongly robust if, for each 𝑝 ∈ Δ(X), the arithmetic mean

of responsiveness is strictly greater than one-half:∑
𝑖∈𝑁

𝑝(𝜙(𝑥) = 𝑥𝑖)/𝑛 > 1/2 for all 𝑝 ∈ Δ(X). (13)

Clearly, a strongly robust rule is robust. In the next proposition, we show that a voting rule

is strongly robust if and only if it is robust and anonymous; that is, it is a SMR with odd 𝑛.

Proposition B. Suppose that 𝑛 is odd. Then, a voting rule is strongly robust if and only if it is

a SMR. Suppose that 𝑛 is even. Then, no voting rule is strongly robust.
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Proof. Note that, by (3), (13) is equivalent to∑
𝑖∈𝑁

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] > 0 for all 𝑝 ∈ Δ(X). (14)

Suppose that 𝑛 is odd and that 𝜙 is a SMR. Then, 𝜙 satisfies (14) by Lemma 1, so a SMR is

strongly robust.

Suppose that 𝜙 is not a SMR. Then, there exist 𝑦 ∈ X and 𝑆 ⊊ 𝑁 such that |𝑆 | < 𝑛/2 and

𝜙(𝑦) = 𝑦𝑖 if and only if 𝑖 ∈ 𝑆. Let 𝑝 ∈ Δ(X) be such that 𝑝(𝑦) = 1. Then,
∑

𝑖∈𝑁 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] =

|𝑆 | − |𝑁 \ 𝑆 | < 0, violating (14). Thus, a voting rule is not strongly robust unless it is a SMR.

Suppose that 𝑛 is even. Let 𝑦 ∈ X be such that 𝑦𝑖 = 1 for 𝑖 ≤ 𝑛/2 and 𝑦𝑖 = −1 for 𝑖 ≥ 𝑛/2+1.

For 𝑝 ∈ Δ(X) with 𝑝(𝑦) = 1 and any 𝜙 ∈ Φ, it holds that
∑

𝑖∈𝑁 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] = 0, violating (14).

Thus, no voting rule is strongly robust when 𝑛 is even. □

B.2 Semi-robustness and a WMR

We consider the following weaker version of robustness to characterize a WMR with possibly

negative weights.

Definition C. A voting rule 𝜙 ∈ Φ is semi-robust if, for each 𝑝 ∈ Δ(X), the responsiveness of

at least one individual is not equal to one-half.

To understand the implication of semi-robustness, imagine that some individuals are more

likely to have correct choices and other individuals are more likely to have wrong choices.

However, if the responsiveness of every individual is equal to one-half, then it is difficult to

extract information from individuals in order to arrive at a correct group decision. A semi-robust

rule does not face this problem for any probability distribution.

The following proposition establishes the equivalence of a semi-robust rule and a WMR

with possibly negative weights allowing no ties.

Proposition C. A voting rule is semi-robust if and only if it is a WMR such that there are no

ties.

To prove Proposition C, we use the following theorem of alternatives, which is referred to

as Gordan’s theorem. This result also appears in the work of Gale (1960, Theorems 2.9) as a

corollary of Farkas’ lemma.

Lemma A. Let 𝐴 be an 𝑛 × 𝑚 matrix. Exactly one of the following alternatives holds.
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• There exists 𝜉 ∈ R𝑛 satisfying

𝜉⊤𝐴 ≫ 0.

• There exists 𝜂 ∈ R𝑚 satisfying

𝐴𝜂 = 0, 𝜂 > 0.

Proof of Proposition C. We can restate the conditions in Proposition C as follows.

(a′′) By Lemma 1, a voting rule 𝜙 is a WMR allowing no ties if and only if there exists

𝑤 = (𝑤𝑖)𝑖∈𝑁 ≠ 0 such that ∑
𝑖∈𝑁

𝑤𝑖𝑙𝑖 𝑗 =
∑
𝑖∈𝑁

𝑤𝑖
(
𝜙(𝑥 𝑗 )𝑥 𝑗

𝑖

)
> 0

for each 𝑗 ∈ 𝑀 , or equivalently, 𝑤⊤𝐿 ≫ 0.

(b′′) By definition, a voting rule is not semi-robust if and only if there exists 𝑝 = (𝑝 𝑗 ) 𝑗∈𝑀 > 0

such that ∑
𝑗∈𝑁

𝑙𝑖 𝑗 𝑝 𝑗 =
∑

𝑗 :𝜙(𝑥 𝑗 )=𝑥 𝑗
𝑖

𝑝 𝑗 −
∑

𝑗 :𝜙(𝑥 𝑗 )≠𝑥 𝑗
𝑖

𝑝 𝑗 = 0

for each 𝑖 ∈ 𝑁 , or equivalently, 𝐿𝑝 = 0.

Proposition C states that exactly one of (a′′) and (b′′) holds, which is true by Lemma A. In

fact, by plugging 𝐿, 𝑤, and 𝑝 into 𝐴, 𝜉, and 𝜂 in Lemma A, respectively, we can conclude that

exactly one of (a′′) and (b′′) holds. □

C An imaginary asset market

We can explain why Proposition 1 is true in terms of arbitrage-free pricing in an imaginary

asset market because we can interpret Lemma 6 as a corollary of the fundamental theorem of

asset pricing.

Let 𝑀 and 𝑁 be the set of states and the set of assets, respectively. One unit of asset 𝑖 ∈ 𝑁

yields a payoff 𝑙𝑖 𝑗 when state 𝑗 ∈ 𝑀 is realized. Recall that 𝑙𝑖 𝑗 equals +1 if 𝑖’s choice agrees

with the collective decision and −1 otherwise. The matrix 𝐿 is referred to as the payoff matrix.

We denote by 𝑞 = (𝑞𝑖)𝑖∈𝑁 the vector of prices of the 𝑛 assets.

A portfolio defined by a vector 𝑤 = (𝑤𝑖)𝑖∈𝑁 consists of 𝑤𝑖 units of asset 𝑖 for each 𝑖 ∈ 𝑁 .

It yields a payoff
∑

𝑖∈𝑁 𝑤𝑖𝑙𝑖 𝑗 when state 𝑗 ∈ 𝑀 is realized, which is summarized in 𝑤⊤𝐿 =

(∑𝑖∈𝑁 𝑤𝑖𝑙𝑖 𝑗 ) 𝑗∈𝑀 . The price of the portfolio is 𝑤⊤𝑞 =
∑

𝑖∈𝑁 𝑞𝑖𝑤𝑖.

25



We say that a price vector 𝑞 is arbitrage-free if 𝑤⊤𝐿 ≥ 0 implies 𝑤⊤𝑞 ≥ 0; that is, the price

of any portfolio yielding a nonnegative payoff in each state is nonnegative. We say that a price

vector 𝑞 is determined by a nonnegative linear pricing rule if there exists a nonnegative vector

𝑝 = (𝑝 𝑗 ) 𝑗∈𝑀 > 0, which is referred to as a state price, such that 𝑞 = 𝐿𝑝. The fundamental

theorem of asset pricing establishes the equivalence of an arbitrage-free price and the existence

of a nonnegative linear pricing rule, which is immediate from Farkas’ lemma.

Claim A. A price vector 𝑞 is arbitrage-free if and only if it is determined by a nonnegative

linear pricing rule. That is, the set of all arbitrage-free price vectors is {𝑞 : 𝑞 = 𝐿𝑝, 𝑝 > 0}.

The fundamental theorem of asset pricing has the following corollary, which is immediate

from Lemma 6 (a corollary of Farkas’ lemma).

Claim B. There exists a portfolio with nonnegative weights in all assets (i.e. no short selling)

yielding a strictly positive payoff in each state if and only if, for any arbitrage-free price vector,

the price of at least one asset is strictly positive.

The former condition is restated as 𝑤⊤𝐿 ≫ 0 for some 𝑤 ≥ 0 and the latter condition is

restated as 𝐿𝑝 ≰ 0 for all 𝑝 > 0. Therefore, Claim B implies the equivalence of a robust rule

and a WMR with nonnegative weights allowing no ties.

This paper does not discuss how to find optimal weights of WMRs, whereas it is a central

topic in modern portfolio theory to determine optimal weights. Thus, modern portfolio theory

could be useful to find optimal weights of WMRs.

D On Example 2

In this appendix, we consider 𝜙 ∈ Φ and 𝑝 ∈ Δ(X) given by (7) and (11), respectively, and

show that no other deterministic voting rule is Pareto-preferred to 𝜙 under 𝑝.

Let 𝜙′ ∈ Φ be weakly Pareto-preferred to 𝜙 under 𝑝. It is enough to show that 𝜙′ = 𝜙. We

first prove that 𝜙′(𝑥) = 𝜙(𝑥) for all 𝑥 ∉ A. This is because otherwise there exists 𝑥 ∉ A such

that 𝜙′(𝑥)𝑥1 = −1 and thus the expected payoff of individual 1 under 𝜙′ is strictly less that that
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under 𝜙:

𝐸𝑝 [𝜙(𝑥)𝑥1] − 𝐸𝑝 [𝜙′(𝑥)𝑥1] =
∑
𝑥∉A

𝑝(𝑥) (𝜙(𝑥)𝑥1 − 𝜙′(𝑥)𝑥1) +
∑
𝑥∈A

𝑝(𝑥) (𝜙(𝑥)𝑥1 − 𝜙′(𝑥)𝑥1)

=
∑
𝑥∉A

𝛽(1 − 𝜙′(𝑥)𝑥1) +
∑
𝑥∈A

𝛼(−1 − 𝜙′(𝑥)𝑥1)

≥ 2𝛽 − 10𝛼 = 2(1 − 140𝛼)/27 > 0.

We next prove that 𝜙′(𝑥) = 𝜙(𝑥) for all 𝑥 ∈ A. By the above property of 𝜙′, we obtain∑
𝑖∈𝑁

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] −
∑
𝑖∈𝑁

𝐸𝑝 [𝜙′(𝑥)𝑥𝑖] = 𝛼
∑
𝑥∈A

(∑
𝑖∈𝑁

𝜙(𝑥)𝑥𝑖 −
∑
𝑖∈𝑁

𝜙′(𝑥)𝑥𝑖

)
≥ 0,

where the last inequality follows from
∑

𝑖∈𝑁 𝜙(𝑥)𝑥𝑖 = |∑𝑖∈𝑁 𝑥𝑖 | = |∑𝑖∈𝑁 𝜙′(𝑥)𝑥𝑖 | ≥
∑

𝑖∈𝑁 𝜙′(𝑥)𝑥𝑖
for all 𝑥 ∈ A. We also have

∑
𝑖∈𝑁 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] ≤

∑
𝑖∈𝑁 𝐸𝑝 [𝜙′(𝑥)𝑥𝑖] because 𝜙′ is weakly Pareto-

preferred to 𝜙 under 𝑝. Thus,
∑

𝑖∈𝑁 𝐸𝑝 [𝜙(𝑥)𝑥𝑖] =
∑

𝑖∈𝑁 𝐸𝑝 [𝜙′(𝑥)𝑥𝑖], which implies that∑
𝑖∈𝑁 𝜙(𝑥)𝑥𝑖 =

∑
𝑖∈𝑁 𝜙′(𝑥)𝑥𝑖 for all 𝑥 ∈ A, i.e., 𝜙′(𝑥) = 𝜙(𝑥) for all 𝑥 ∈ A.

E Proof of Proposition 6

Proof. We first prove the first statement, which asserts that exactly one of the following holds.

(a′′′) Note that, by Lemma 1, a voting rule 𝜙 is a WMR with nonnegative weights allowing no

ties if and only if there exists 𝑤 = (𝑤𝑖)𝑖∈𝑁 ≥ 0 such that, for all 𝜙′ ∈ Φ \ {𝜙} and 𝑥 ∈ X,

(8) is true with strict inequality holding for at least one decision profile 𝑥. This is true if

and only if there exists 𝑤 = (𝑤𝑖)𝑖∈𝑁 ≥ 0 such that∑
𝑖∈𝑁

𝑤𝑖𝐸𝑝 [𝜙(𝑥)𝑥𝑖] >
∑
𝑖∈𝑁

𝑤𝑖𝐸𝑝 [𝜙′(𝑥)𝑥𝑖] for all 𝜙′ ∈ Φ \ {𝜙},

or equivalently,∑
𝑖∈𝑁

𝑤𝑖 (𝐸𝑝 [𝜙(𝑥)𝑥𝑖] − 𝐸𝑝 [𝜙′(𝑥)𝑥𝑖]) > 0 for all 𝜙′ ∈ Φ \ {𝜙}.

(b′′′) There exists a random voting rule that is weakly Pareto-preferred to 𝜙 if and only if there

exists 𝜌 ∈ RΦ\{𝜙}
+ such that

𝐸𝑝 [𝜙(𝑥)𝑥𝑖] ≤
∑

𝜙′∈Φ\{𝜙}
𝐸𝑝 [𝜙′(𝑥)𝑥𝑖]𝜌(𝜙′)/

∑
𝜙′∈Φ\{𝜙}

𝜌(𝜙′) for all 𝑖 ∈ 𝑁,

or equivalently, ∑
𝜙′∈Φ\{𝜙}

(𝐸𝑝 [𝜙(𝑥)𝑥𝑖] − 𝐸𝑝 [𝜙′(𝑥)𝑥𝑖])𝜌(𝜙′) ≤ 0 for all 𝑖 ∈ 𝑁.
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By Lemma 6, exactly one of (a′′′) and (b′′′) holds. Although the same theorem of alternatives

characterizes both robust rules and strictly efficient rules, its use is different from each other. In

fact, as discussed in Section 5, robustness and strict efficiency are different conditions.

The second and third statements are implied by the well-known theorem of Wald (1950) on

admissible decision functions or that of Pearce (1984) on undominated strategies. Proposition 5

states that a voting rule is a WMR with a weight vector𝑤 if and only if (9) holds. Mathematically,

(9) is equivalent to expected utility maximization, where Φ is the set of actions, 𝑁 is the set

of states, and 𝑤𝑖/
∑

𝑗 𝑤 𝑗 is a probability of state 𝑖 ∈ 𝑁 . Therefore, we can apply the theorem

of Wald (1950) on admissible decision functions or that of Pearce (1984) on undominated

strategies. In particular, Theorems 5.2.1 and 5.2.5 in Blackwell and Girshick (1954) are useful.

Theorem 5.2.1 implies that a voting rule is weakly efficient if and only if there exists a weight

vector 𝑤 > 0 such that (9) holds. Theorem 5.2.5 implies that a voting rule is efficient if and

only if there exists a weight vector 𝑤 ≫ 0 such that (9) holds. Therefore, this corollary holds

by Proposition 5. □
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In the main text, we introduce the concept of robustness by assuming that an individual

votes sincerely and prefers a voting rule with higher responsiveness. We provide justification for

these assumptions by discussing two alternative definitions of robustness in Online Appendix A.

First, we redefine robustness as a requirement for a voting mechanism, where individuals can

vote insincerely, and show that sincere voting is weakly dominant for every individual if the

mechanism satisfies robustness. Next, we redefine robustness using the expected utility of

individuals (rather than responsiveness) and provide justification for the original definition,

where we consider a set of probability distributions over individuals’ utility functions. We

elaborate on the robustness in terms of the expected utility in Online Appendix B.

A Alternative definitions of robustness

A.1 Robustness as a requirement for a mechanism

We regard 𝜙 ∈ Φ as a mechanism with a message space X. Individual 𝑖 ∈ 𝑁 has a VNM

utility function 𝑢𝑖 : {−1, 1} → R over the set of alternatives {−1, 1} representing a strict

preference relation, i.e., 𝑢𝑖 (1) ≠ 𝑢𝑖 (−1). The preferred alternative of individual 𝑖 is denoted by

𝛿𝑢𝑖 ∈ {−1, 1}, i.e.,

𝛿𝑢𝑖 ≡


1 if 𝑢𝑖 (1) > 𝑢𝑖 (−1),

−1 if 𝑢𝑖 (−1) > 𝑢𝑖 (1).

∗School of Management, Department of Business Economics, Tokyo University of Science.
†Department of Economics, Bar-Ilan University.
‡Department of Economics, Hitotsubashi University.
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Let U𝑖 ≡ {𝑢𝑖 : 𝑢𝑖 (1) ≠ 𝑢𝑖 (−1)} be the set of all utility functions of individual 𝑖 representing

strict preferences. We write U ≡ ∏
𝑖∈𝑁 U𝑖.

Individual 𝑖 ∈ 𝑁 with a voting strategy 𝜎𝑖 : U𝑖 → {−1, 1} casts a vote for 𝜎𝑖 (𝑢𝑖) ∈ {−1, 1}.

A sincere voting strategy is 𝛿𝑖 : U𝑖 → {−1, 1} satisfying 𝛿𝑖 (𝑢𝑖) = 𝛿𝑢𝑖 for all 𝑢𝑖 ∈ U𝑖. Let Σ𝑖 be

the set of all strategies of individual 𝑖. We write Σ =
∏

𝑖∈𝑁 Σ𝑖.

Assume that 𝑢 ≡ (𝑢𝑖)𝑖∈𝑁 ∈ U is randomly drawn according to a probability distribution

𝜆 ∈ Δ(U), where Δ(U) is the set of all probability distributions over U. When the individuals

follow a strategy profile 𝜎 ≡ (𝜎𝑖)𝑖∈𝑁 ∈ Σ under a mechanism 𝜙, the probability distribution of

a decision profile 𝜎(𝑢) ≡ (𝜎𝑖 (𝑢𝑖))𝑖∈𝑁 is 𝜆 ◦ 𝜎−1 ∈ Δ(X) with

𝜆 ◦ 𝜎−1(𝑥) ≡ 𝜆({𝑢 ∈ U : 𝜎(𝑢) = 𝑥}),

and the responsiveness of individual 𝑖 ∈ 𝑁 is

𝜆 ◦𝜎−1(𝜙(𝑥) = 𝑥𝑖) ≡ 𝜆 ◦𝜎−1({𝑥 ∈ X : 𝜙(𝑥) = 𝑥𝑖}) = 𝜆({𝑢 ∈ U : 𝜙(𝜎(𝑢)) = 𝜎𝑖 (𝑢𝑖)}). (A.1)

We define robustness of a voting mechanism using the responsiveness (A.1) generated by

the reported messages 𝜎(𝑢), where the true probability distribution 𝜆 ∈ Δ(U) and the strategy

profile 𝜎 ∈ Σ followed by the individuals are assumed to be unknown.

Definition A. A voting rule 𝜙 ∈ Φ is robust as a mechanism if, for each 𝜆 ∈ Δ(U) and each

strategy profile 𝜎 ∈ Σ, 𝜆 ◦ 𝜎−1(𝜙(𝑥) = 𝑥𝑖) > 1/2 for at least one 𝑖 ∈ 𝑁 .

If 𝜙 ∈ Φ is robust as a mechanism, then it is robust in the original sense. This is because

𝜙 is robust if and only if, for each 𝜆 ∈ Δ(U), the responsiveness (A.1) is strictly greater than

one-half for at least one individual when every player adopts a sincere voting strategy. However,

it is straightforward to see that both concepts are equivalent.

Lemma A. A voting rule 𝜙 ∈ Φ is robust as a mechanism if and only if it is robust.

Proof. This lemma follows from Δ(X) = ∪
𝜎∈Σ{𝜆 ◦ 𝜎−1 ∈ Δ(X) : 𝜆 ∈ Δ(U)}. □

Moreover, if 𝜙 is robust as a mechanism, then a sincere voting strategy is weakly dominant

under 𝜙; that is, 𝜙 satisfies strategyproofness.

Lemma B. If 𝜙 ∈ Φ is robust as a mechanism, then, for each individual 𝑖 ∈ 𝑁 , the sincere

voting strategy 𝛿𝑖 is a best response to any strategy profile of the other individuals.
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Proof. It is enough to show that, for any decision profile of the other individuals 𝑥−𝑖 ≡ (𝑥 𝑗 ) 𝑗≠𝑖, it

holds that 𝑢𝑖 (𝜙(𝛿𝑢𝑖, 𝑥−𝑖)) ≥ 𝑢𝑖 (𝜙(−𝛿𝑢𝑖, 𝑥−𝑖)) for all 𝑖 ∈ 𝑁 and 𝑢𝑖 ∈ U𝑖. Seeking a contradiction,

suppose otherwise. That is, there exist 𝑖∗ ∈ 𝑁 , 𝑢𝑖∗ ∈ U𝑖∗ , and 𝑧−𝑖∗ ≡ (𝑧 𝑗 ) 𝑗≠𝑖∗ such that

𝜙(𝛿𝑢𝑖∗ , 𝑧−𝑖∗) = −𝛿𝑢𝑖∗ and 𝜙(−𝛿𝑢𝑖∗ , 𝑧−𝑖∗) = 𝛿𝑢𝑖∗ . Without loss of generality, we assume that

𝛿𝑢𝑖∗ = 1. Let 𝑝 ∈ Δ(X) be such that 𝑝(1, 𝑧−𝑖∗) = 𝑝(−1, 𝑧−𝑖∗) = 1/2. Then, 𝑝(𝜙(𝑥) = 𝑥𝑖∗) = 0

and 𝑝(𝜙(𝑥) = 𝑥𝑖) = 1/2 if 𝑖 ≠ 𝑖∗. This implies that 𝜙 is not robust as a mechanism by Lemma

A. □

In summary, we can give an equivalent definition of robustness without the assumption of

sincere voting and show that a sincere voting strategy is weakly dominant under a robust rule,

thus providing justification for the assumption of sincere voting in the main text.

A.2 Robustness in terms of expected utility

Under the assumption of sincere voting justified in Section A.1, we redefine robustness using

the expected utility of individuals and provide justification for the use of responsiveness in the

original definition of robustness.

Individual 𝑖 ∈ 𝑁 with a utility function 𝑢𝑖 ∈ U𝑖 votes for the preferred alternative 𝛿𝑢𝑖 ∈

{−1, 1}, so the resulting decision profile is 𝛿𝑢 = (𝛿𝑢𝑖)𝑖∈𝑁 ∈ X. When 𝜆 ∈ Δ(U) is the true

probability distribution, individual 𝑖 ∈ 𝑁 is assumed to prefer a voting rule 𝜙 to another voting

rule 𝜙′ if and only if 𝐸𝜆 [𝑢𝑖 (𝜙(𝛿𝑢))] ≥ 𝐸𝜆 [𝑢𝑖 (𝜙′(𝛿𝑢))], where 𝐸𝜆 is the expectation operator

with respect to 𝜆. Thus, we consider the following Pareto order in terms of expected utility

under 𝜆: we say that 𝜙 is weakly Pareto-preferred to 𝜙′ (in terms of expected utility) under 𝜆

if 𝐸𝜆 [𝑢𝑖 (𝜙(𝛿𝑢))] ≥ 𝐸𝜆 [𝑢𝑖 (𝜙′(𝛿𝑢))] for all 𝑖 ∈ 𝑁 . A special case is the Pareto order in terms

of responsiveness because the responsiveness equals the expected utility if the utility level is

either zero or one. To explain it more formally, denote the set of such utility functions and that

of the corresponding profiles of utility functions by

U∗
𝑖 = {𝑢𝑖 ∈ U𝑖 : 𝑢𝑖 (1), 𝑢𝑖 (−1) ∈ {0, 1}} and U∗ ≡

∏
𝑖∈𝑁

U∗
𝑖 ,

respectively. Then, for 𝑝 ∈ Δ(X) and 𝜆𝑝 ∈ Δ(U) such that 𝜆𝑝 (𝑢) = 𝑝(𝛿𝑢) if 𝑢 ∈ U∗ and

𝜆𝑝 (𝑢) = 0 otherwise, 𝜙 is Pareto-preferred to 𝜙′ in terms of expected utility under 𝜆𝑝 if and

only if 𝜙 is Pareto-preferred to 𝜙′ in terms of responsiveness under 𝑝 because 𝐸𝜆𝑝 [𝑢𝑖 (𝜙(𝛿𝑢))] =

𝑝(𝜙(𝑥) = 𝑥𝑖).
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We consider an extension of robustness using the Pareto order in terms of expected utility,

where the true probability distribution 𝜆 ∈ Δ(U) is assumed to be unknown but known to be

contained in Λ ⊆ Δ(U).

Definition B. For Λ ⊆ Δ(U), a voting rule 𝜙 ∈ Φ is Λ-robust if the inverse rule of 𝜙 is not

weakly Pareto-preferred to 𝜙 in terms of expected utility under any 𝜆 ∈ Λ.

By the above discussion, 𝜙 ∈ Φ is robust if and only if it is Λ∗-robust with

Λ∗ = {𝜆 ∈ Δ(U) : 𝜆(𝑢) > 0 implies 𝑢 ∈ U∗} = {𝜆𝑝 ∈ Δ(U) : 𝑝 ∈ Δ(X)}.

Thus, Λ-robustness with Λ ⊃ Λ∗ is a stronger requirement than robustness, and Λ-robustness

with Λ ⊂ Λ∗ is a weaker requirement than robustness.

The underlying assumption in Λ∗-robustness is that the utility levels are known to be either

zero or one. However, even if Λ ⊋ Λ∗ and the utility levels are unknown under Λ, Λ-robustness

can be equivalent to robustness.

To demonstrate it, consider

Γ∗ = {𝜆 ∈ Δ(U) :
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥′] = 1 for all 𝑥, 𝑥′ ∈ X and 𝑖 ∈ 𝑁}

and assume that the true probability distribution is unknown but known to be contained in Γ∗.

Note that 𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) −𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥] is the conditional expected net gain of individual 𝑖 ∈ 𝑁

induced by the switch from an unfavorable alternative −𝛿𝑢𝑖 to a favorable alternative 𝛿𝑢𝑖 given

𝛿𝑢 = 𝑥. Thus, Γ∗ is the set of all probability distributions over U such that the conditional

expected net gain is the same for all 𝑥 ∈ X, and in particular, it holds that Λ∗ ⊂ Γ∗. Note that

the conditional expected net gain is unknown because it depends upon the unknown probability

distribution 𝜆, which also implies that the utility levels are unknown. However, Γ∗-robustness

is equivalent to robustness.

Lemma C. A voting rule 𝜙 ∈ Φ is Γ∗-robust if and only if it is robust.

Proof. For each 𝜆 ∈ Δ(U), let 𝑝𝜆 ∈ Δ(X) be the probability distribution of the decision profile

𝛿𝑢; that is, 𝑝𝜆 (𝑥) = 𝜆({𝑢 ∈ U : 𝛿𝑢 = 𝑥}) for all 𝑥 ∈ X. Then, the expected utility of individual

𝑖 ∈ 𝑁 under 𝜙 ∈ Φ is

𝐸𝜆 [𝑢𝑖 (𝜙(𝛿𝑢))] =
∑

𝑥:𝜙(𝑥)=𝑥𝑖
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥) +

∑
𝑥:𝜙(𝑥)=−𝑥𝑖

𝐸𝜆 [𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥)

=
∑

𝑥:𝜙(𝑥)=𝑥𝑖
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥) +

∑
𝑥∈X

𝐸𝜆 [𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥)

= 𝑐𝑖𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖) + 𝐸𝜆 [𝑢𝑖 (−𝛿𝑢𝑖)],
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where 𝑐𝑖 = 𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥] > 0, which is independent of 𝑥 ∈ X. Thus,

𝐸𝜆 [𝑢𝑖 (𝜙(𝛿𝑢))] ≥ 𝐸𝜆 [𝑢𝑖 (𝜙′(𝛿𝑢))] if and only if 𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖) ≥ 𝑝𝜆 (𝜙′(𝑥) = 𝑥𝑖). This implies

that Γ∗-robustness is equivalent to robustness. □

B Λ-robustness

We study Λ-robustness introduced in Section A.2 when Λ ≠ Λ∗ and Λ ≠ Γ∗ . First, we consider

Λ-robustness with Λ ⊂ Λ∗ and show that it can be a substantially weaker requirement than

robustness in that some deterministic rule can be Pareto-preferred to a Λ-robust rule. Next,

we consider Λ-robustness with Λ ⊃ Γ∗ and demonstrate the following. Even if Λ ⊋ Γ∗, Λ-

robustness can be equivalent to robustness. However, if Λ is too large, Λ-robustness implies the

existence of a dictator.

B.1 Λ-robustness with Λ ⊂ Λ∗

When the true distribution of decision profiles is known to be in 𝑃 ⊊ Δ(X), we can consider

the following weaker requirement than robustness (as discussed in Section 6): for each 𝑝 ∈ 𝑃,

the inverse rule −𝜙 is not weakly Pareto-preferred to 𝜙. This requirement is equivalent to

Λ𝑃-robustness with Λ𝑃 ≡ {𝜆𝑝 ∈ Λ∗ : 𝑝 ∈ 𝑃} ⊊ Λ∗ discussed in Section A.2, and the mapping

𝑃 ↦→ Λ𝑃 is a bijection from 2Δ(X) to 2Λ∗ . We characterize a Λ𝑃-robust rule with 𝑃 ⊂ Δ(X), or

equivalently, a Λ-robust rule with Λ ⊂ Λ∗.

Because Λ∗-robustness is equivalent to robustness, no other deterministic voting rule is

weakly Pareto-preferred to a Λ∗-robust rule under any 𝑝 ∈ Δ(X) by Lemma 4. However, when

Λ ⊊ Λ∗, some deterministic voting rule can be weakly Pareto-preferred to a Λ-robust rule under

some 𝑝 ∈ Δ(X). To see this, assume that 𝑛 = 9 and let 𝜙 ∈ Φ be a two-thirds rule, i.e., 𝜙(𝑥) = 1

if and only if #{𝑖 : 𝑥𝑖 = 1} ≥ 6. Define

𝑃 = {𝑝 ∈ Δ(X) : 𝑝(𝑥) = 𝑝(𝑥𝜋) for all 𝜋 ∈ Π, 𝑝(𝜙(𝑥) = 𝑥𝑖) > 1/2 for all 𝑖 ∈ 𝑁},

which is the set of symmetric probability distributions such that 𝜙 is Λ𝑃-robust. Then, a SMR

is strictly Pareto-preferred to 𝜙 under 𝑝 ∈ 𝑃 with 𝑝({𝑥 : #{𝑖 : 𝑥𝑖 = 1} = 5}) > 0 because the

responsiveness of every individual under a SMR is
∑9

𝑘=5 𝑘/9 × 𝑝({𝑥 : #{𝑖 : 𝑥𝑖 = 1} = 𝑘}), and

that under a two-thirds rule is
∑9

𝑘=6 𝑘/9 × 𝑝({𝑥 : #{𝑖 : 𝑥𝑖 = 1} = 𝑘}).1

1For example, such 𝑝 is given by 𝑝(𝑥) = 1 − 𝜀 if #{𝑖 : 𝑥𝑖 = 1} = 9 and 𝑝(𝑥) = 𝜀/
(9
5
)

if #{𝑖 : 𝑥𝑖 = 1} = 5, where
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The above discussion suggests that Λ𝑃-robustness can be a substantially weaker requirement

than robustness when 𝑃 ⊊ Δ(X). In particular, a Λ𝑃-robust rule is not necessarily a WMR.

However, a Λ𝑃-robust rule has a characterization similar to the characterization of a WMR in

Lemma 1 if 𝑃 is a convex hull of a finite set of Δ(X). The following proposition is an extension

of Proposition 1 in the main text. Its proof is essentially the same as that of Proposition 1.

Proposition A. Suppose that 𝑃 ⊆ Δ(X) is a convex hull of a finite set {𝑝 𝑗 } 𝑗∈𝑀 ⊊ Δ(X). Then,

a deterministic voting rule 𝜙 ∈ Φ is Λ𝑃-robust if and only if there exists 𝑤 ∈ R𝑛+ such that∑
𝑖∈𝑁

𝑤𝑖𝐸𝑝 𝑗 [𝜙(𝑥)𝑥𝑖] > 0 for all 𝑗 ∈ 𝑀. (B.2)

Proof. Let 𝑀 = {1, . . . , 𝑚} and 𝐿 = [𝑙𝑖 𝑗 ]𝑛×𝑚 =
[
𝐸𝑝 𝑗 [𝜙(𝑥)𝑥𝑖]

]
𝑛×𝑚. Then, (B.2) is rewritten

as
∑

𝑖∈𝑁 𝑤𝑖𝑙𝑖 𝑗 > 0 for each 𝑗 ∈ 𝑀 , or equivalently, 𝑤⊤𝐿 ≫ 0. By Lemma 6, this is true

if and only if there does not exist 𝜆 = (𝜆 𝑗 ) 𝑗∈𝑀 > 0 such that 𝐿𝜆 ≤ 0, or equivalently,∑
𝑗∈𝑀 𝑙𝑖 𝑗𝜆 𝑗 =

∑
𝑗∈𝑀 𝜆 𝑗𝐸𝑝 𝑗 [𝜙(𝑥)𝑥𝑖] ≤ 0 for each 𝑖 ∈ 𝑁 . This is true if and only if 𝜙 is Λ𝑃-robust

because 𝑃 is a convex hull of {𝑝 𝑗 } 𝑗∈𝑀 . □

Note that Δ(X) is the convex hull of the finite set consisting of all degenerate probability

distributions assigning probability one to some decision profile 𝑥 ∈ X. Thus, if 𝑃 = Δ(X), then

(B.2) is reduced to (2) in Lemma 1; that is, a Λ𝑃-robust rule is a WMR. If 𝑃 ⊊ Δ(X), however,

(B.2) is a weaker requirement than (2), so a Λ𝑃-robust rule is not necessarily a WMR.

A similar result holds as long as 𝑃 is a closed convex set. That is, we can show that a voting

rule 𝜙 ∈ Φ is Λ𝑃-robust if and only if there exists 𝑤 ∈ R𝑛+ such that∑
𝑖∈𝑁

𝑤𝑖𝐸𝑝 [𝜙(𝑥)𝑥𝑖] > 0 for all 𝑝 ∈ 𝑃.

Because the proof is similar but more technical, we do not give a proof here (we can provide

the proof upon request).

B.2 Λ-robustness with Λ ⊃ Γ∗

Λ-robustness withΛ ⊃ Γ∗ is a stronger requirement than robustness. However, ifΛ is sufficiently

close to Γ∗, Λ-robustness is equivalent to robustness. To see this, for 𝜀 > 0, let

Γ(𝜀) = {𝜆 ∈ Δ(U) :
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥′] < 1 + 𝜀 for all 𝑥, 𝑥′ ∈ X and 𝑖 ∈ 𝑁}.

0 < 𝜀 < 1/2.
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Note that Γ∗ ⊊ Γ(𝜀) and Γ∗ =
∩

𝜀>0 Γ(𝜀). Because Γ∗-robustness is equivalent to robustness,

Γ(𝜀)-robustness is a stronger requirement than robustness. However, if 𝜀 > 0 is sufficiently

small, Γ(𝜀)-robustness is equivalent to robustness as shown by the next lemma, which general-

izes Lemma C.

Proposition B. Let

𝜀 = min
𝜙∈Φ:𝜙 is robust

min
𝑝∈Δ(X)

max
𝑖∈𝑁

2𝑝(𝜙(𝑥) = 𝑥𝑖) − 1
1 − 𝑝(𝜙(𝑥) = 𝑥𝑖)

,

which is strictly positive by the definition of robustness. Then, for any Λ ⊂ Δ(U) with

Λ∗ ⊆ Λ ⊆ Γ(𝜀), a voting rule 𝜙 ∈ Φ is Λ-robust if and only if it is robust.

Proof. It is enough to show that robustness implies Γ(𝜀)-robustness. Let 𝜙 ∈ Φ be a robust rule.

Fix arbitrary 𝜆 ∈ Γ(𝜀), and let 𝑖 ∈ 𝑁 be the individual who has the maximum responsiveness

under 𝜆. Define 𝐷𝜆 = max𝑥∈X 𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥] and 𝐷𝜆 = min𝑥∈X 𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) −

𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]. Note that 𝐷𝜆 ≥ 𝐷𝜆 > 0 and 𝐷𝜆/𝐷𝜆 < 1 + 𝜀 because 𝜆 ∈ Γ(𝜀). Then,

𝐸𝜆 [𝑢𝑖 (𝜙(𝛿𝑢)) − 𝑢𝑖 (−𝜙(𝛿𝑢))]

=
∑

𝑥:𝜙(𝑥)=𝑥𝑖
𝐸𝜆 [𝑢𝑖 (𝛿𝑢𝑖) − 𝑢𝑖 (−𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥) +

∑
𝑥:𝜙(𝑥)=−𝑥𝑖

𝐸𝜆 [𝑢𝑖 (−𝛿𝑢𝑖) − 𝑢𝑖 (𝛿𝑢𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥)

≥ 𝐷𝜆

∑
𝑥:𝜙(𝑥)=𝑥𝑖

𝑝𝜆 (𝑥) − 𝐷𝜆

∑
𝑥:𝜙(𝑥)=−𝑥𝑖

𝑝𝜆 (𝑥)

> 𝐷𝜆

(
𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖) − (1 + 𝜀)𝑝𝜆 (𝜙(𝑥) = −𝑥𝑖)

)
= 𝐷𝜆

(
2𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖) − 1 − 𝜀(1 − 𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖))

)
≥ 0,

where the last inequality holds by the construction of 𝜀. This implies that the inverse rule is

not weakly Pareto-preferred to 𝜙 in terms of expected utility under 𝜆. Because 𝜆 ∈ Γ(𝜀) is an

arbitrary element, 𝜙 must be Γ(𝜀)-robust. □

In contrast, if 𝜀 is too large, Γ(𝜀)-robustness is equivalent to the existence of a dictator.

Proposition C. Let 𝜀 ≡ 2𝑛 − 2. Then, for any Λ ⊂ Δ(U) with Γ(𝜀) ⊆ Λ, a voting rule 𝜙 ∈ Φ

is Λ-robust if and only if there exists a dictator 𝑖 ∈ 𝑁 such that 𝜙(𝑥) = 𝑥𝑖 for all 𝑥 ∈ X.

Proof. It is enough to show that Γ(𝜀)-robustness implies the existence of a dictator. Let 𝜙 be

Γ(𝜀)-robust. Seeking a contradiction, suppose that there is no dictator. For each 𝑥 ∈ X, let
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𝑢𝑥 ∈ U be such that

(𝑢𝑥𝑖 (1), 𝑢𝑥𝑖 (−1)) =



(1/(2𝑛 − 1), 0) if 𝑥𝑖 = 1 = 𝜙(𝑥),

(1, 0) if 𝑥𝑖 = 1 ≠ 𝜙(𝑥),

(0, 1/(2𝑛 − 1)) if 𝑥𝑖 = −1 = 𝜙(𝑥),

(0, 1) if 𝑥𝑖 = −1 ≠ 𝜙(𝑥),

and let 𝜆 ∈ Δ(U) be the uniform distribution over {𝑢𝑥 ∈ U : 𝑥 ∈ X}. Note that 𝜆 ∈ Γ(𝜀).

Because there is no dictator and 𝜆(𝑢𝑥) = 1/#X = 1/2𝑛 for each 𝑥 ∈ X, the responsiveness of

each individual is at most 1 − 1/2𝑛, i.e., 𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖) ≤ 1 − 1/2𝑛 for each 𝑖 ∈ 𝑁 . Thus,

𝐸𝜆 [𝑢𝑖 (𝜙(𝛿𝑢)) − 𝑢𝑖 (−𝜙(𝛿𝑢)]

=
∑

𝑥:𝜙(𝑥)=𝑥𝑖
𝐸𝜆 [𝑢𝑖 (𝑥𝑖) − 𝑢𝑖 (−𝑥𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥) +

∑
𝑥:𝜙(𝑥)=−𝑥𝑖

𝐸𝜆 [𝑢𝑖 (−𝑥𝑖) − 𝑢𝑖 (𝑥𝑖) |𝛿𝑢 = 𝑥]𝑝𝜆 (𝑥)

= 𝑝𝜆 (𝜙(𝑥) = 𝑥𝑖)/(2𝑛 − 1) − 𝑝𝜆 (𝜙(𝑥) = −𝑥𝑖) ≤ (1 − 1/2𝑛)/(2𝑛 − 1) − 1/2𝑛 = 0.

This implies that the inverse rule is weakly Pareto-preferred to 𝜙 in terms of expected utility

under 𝜆 and that 𝜙 is not Γ(𝜀)-robust. □
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