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We investigate the cross-sectional distribution of house prices in the Greater Tokyo
Area for the period 1986 to 2009. We find that size-adjusted house prices follow a lognor-
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centrated in particular areas, and this spatial heterogeneity is the source of the fat upper
tail. These findings suggest that, during a bubble period, prices go up prominently for
particular properties, but not so much for other properties, and as a result, price inequality
across properties increases. In other words, the defining property of real estate bubbles is
not the rapid price hike itself but an increase in price dispersion. We argue that the shape
of cross sectional house price distributions may contain information useful for the detection
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1 Introduction

Property market developments are of increasing importance to practitioners and policymakers.

The financial crises of the past two decades have illustrated just how critical the health of this

sector can be for achieving financial stability. For example, the recent financial crisis in the

United States in its early stages reared its head in the form of the subprime loan problem.

Similarly, the financial crises in Japan and Scandinavia in the 1990s were all triggered by the

collapse of bubbles in the real estate market. More recently, the rapid rise in real estate prices

- often supported by a strong expansion in bank lending - in a number of emerging market

economies has become a concern for policymakers. Given these experiences, it is critically

important to analyze the relationship between property markets, finance, and financial crisis.

One of the most urgent tasks in this respect is the development of methods to detect

bubbles in property markets, which is key to making reliable forecasts about future financial

crises and/or to mitigating them. Consider the case of residential properties. In real estate

economics, the fundamental value of a house is determined as the present discounted value of

current and future income flows resulting from renting the house to someone (see, for example,

Himmelberg et al. (2005)). In a normal situation, due to price arbitrage, the price of a house

remains close to its fundamental value. However, in some cases, arbitrage forces are not present,

and therefore prices deviate substantially from the fundamental value. This is what is called a

housing bubble. To detect housing bubbles defined in this way, we must have a reliable estimate

of the fundamental value. This requires knowing about market participants’ expectations

on rental prices in the coming years. However, such expectations are not observable, and

therefore the fundamental value is quite difficult to estimate. Thus, it is next to impossible for

researchers or policymakers to tell, when they observe a price hike, whether it comes from a

rise in fundamental values or something else.

In this paper, we propose an alternative approach to detecting real estate bubbles. We

propose making use of information on the cross-sectional dispersion of real estate prices. It is

often believed that all prices rise equally during a bubble period. However, this is not the case.

What happens instead is that prices go up prominently for particular properties, but not for

other properties, and as a result, price inequality across properties increases during a bubble

period. In other words, the defining characteristic of real estate bubbles is not the rapid price

hike itself but an increase in price dispersion.

Given these considerations, the present paper addresses the following empirical questions.

First, we examine whether the price distribution is close to a normal distribution, as is often

assumed in empirical studies on house price indexes, or whether it has fatter tails than a

Gaussian distribution. Second, we are interested in how the shape of the price distribution is

affected by house attributes, including the size and location of a house. Third, we would like
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to know how the shape of the distribution changes over time. In order to examine these three

questions, we focus on the housing bubble Japan experienced in the late 1980s and its burst in

the early 1990s.

Recent studies on the cross-sectional distribution of house prices include Gyourko et al.

(2006), McMillen (2008), Van Nieuwerburgh and Weill (2010), and Maattanen and Tervio

(2010). The main interest of Gyourko et al. (2006), Van Nieuwerburgh and Weill (2010),

and Maattanen and Tervio (2010) is the relationship between the house price distribution and

the income distribution. For example, Maattanen and Tervio (2010) ask whether the recent

increases in income inequality in the United States have had any impact on the distribution

of house prices. On the other hand, McMillen (2008) focuses on the change in the house price

distribution over time and asks whether the change in the price distribution comes from a

change in the distribution of house characteristics such as size, location, age, and so on, or

from a change in the implicit prices associated with those characteristics. The focus of our

paper is closely related to the issues discussed in these papers, but differs from them in some

important respects. First, this paper is the first attempt to specify the shape of the house price

distribution, paying particular attention to the tail part of the distribution. Second, this paper

examines the effect of a housing bubble on the cross-sectional price distribution. While steep

increases in the mean of house prices in various countries in recent decades have received a lot

of attention in the literature, the change in the shape of the cross-sectional price distribution

has received much less attention. In this paper, we seek to fill this gap.

Our main findings are as follows. First, the cross-sectional distribution of house prices has

a fat upper tail and the tail part is close to a power-law distribution. This is confirmed by

the goodness-of-fit test recently proposed by Malevergne et al. (2011). On the other hand, the

cross-sectional distribution of house sizes, as measured by the floor space, has an upper tail

that is less fat than that of the price distribution and is close to an exponential distribution.

These two findings suggest a particular functional form of hedonic regression to identify the

size effect. We construct size-adjusted prices by subtracting the house size (multiplied by a

positive coefficient) from the log price and find that the size-adjusted price follows a lognormal

distribution for most of the observation period. An important exception is the period of the

housing bubble and its collapse in 1987-1995, during which the price distribution in each year

has a power-law tail even after controlling for the size effect.

Second, we divide the area covered by our sample (Greater Tokyo) into small pixels and

find that size-adjusted prices almost follow a lognormal distribution within each of these pixels

even during the bubble period, but the mean and variance of each distribution are highly

dispersed across different pixels. This finding implies that the sharp price hike during the

bubble period was concentrated in particular areas, and this spatial heterogeneity is the source
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of the fat upper tail observed for the bubble period.1 We interpret this as evidence for market

segmentation during a bubble period.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the

Japanese housing bubble in the late 1980s. Section 3 then explains the dataset and the empirical

strategy we employ. Next, Sections 4 and 5 present our size- and location-adjustments to house

prices. Finally, Section 6 concludes the paper.

2 Overview of the Japanese Bubble in the Late 1980s

In this section, we provide a brief overview of what happened during the Japanese real estate

bubble in the late 1980s and its collapse in the 1990s, as well as how the government and the

central bank responded.

2.1 The real estate bubble in the late 1980s and its collapse in the 1990s

Figure 1 shows changes in the mean of the cross-sectional house price distribution in the upper

panel, the standard deviation in the middle panel, and the transaction volume in the lower

panel. The data is compiled from individual listings in a real estate advertisement magazine,

which is published on a weekly basis. (More details on the dataset used in the paper are

provided below). We see that the mean price exhibits a sharp increase between the beginning

of 1987 and the beginning of 1988. Previous studies refer to this as the first phase of the

housing bubble in Tokyo. After a short break in 1988, prices started to rise again in 1989 and

continued to do so until the fall of 1990. This is the second phase of the housing bubble. Soon

after the fall of 1990, prices started to turn down, followed by a slow but persistent decline for

more than a decade until prices bottomed out in 2002, when the mean price reached the level

before the bubble started in 1987. Prices finally began to rise again in 2003 and continued to

rise until registering a sharp decline in 2008 due to the recent global financial crisis.

Turning to the standard deviation shown in the middle panel, this exhibits a sharp rise

during the first phase of the bubble and stayed high during the second phase.2 Finally, the

bottom panel, which shows the transaction volume, indicates that the number of transactions

1Cochrane (2002) argues that an important feature of the tech stock bubble in the late 1990s is that it was
concentrated in stocks related to internet business. Cochrane (2002: 17) states that “if there was a ‘bubble,’ or
some behavioral overenthusiasm for stocks, it was concentrated on Nasdaq stocks, and Nasdaq tech and internet
stocks in particular.”

2We also see a secular increase in price dispersion since 1993. We are not quite sure why this is the case, but
recent studies, including Van Nieuwerburgh and Weill (2010) and Gyourko et al. (2006) find some evidence that
the recent rise in house price dispersion across regions in the United States is related to the change in income
distribution across regions. For example, Van Nieuwerburgh and Weill (2010) find that the cross-sectional
coefficient of variation of house prices across 330 metropolitan statistical areas in the United States increased
from 0.15 in 1975 to 0.53 in 2007. Through a counterfactual simulation, they show that this increase in the
dispersion of house prices is accounted for mostly by the increase in income inequality.
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Figure 1: Weekly fluctuations in prices and transaction volume

exhibits a sharp increase at the beginning of 1989, exactly when the mean price started to rise,

although the transaction volume remained practically unchanged during the first phase of the

bubble. Somewhat interestingly, the transaction volume remained at a high level even in 1991

and 1992, when the mean price had already started to decline.

Okina et al. (2001) identify three characteristics of the Japanese economy during the bubble

period. The first characteristic is a rapid and substantial rise in asset prices, including stock

and real estate prices. Stock prices exhibited a rapid rise during the initial stage of the bubble;

the Nikkei 225 began to accelerate in 1986 and the index hit a peak of 38,915 yen at the end of

1989, when it was 3.1 times higher than at the time of the Plaza Agreement in September 1985.

Land prices followed stock prices with a lag of about one year, increasing sharply in 1987 and

peaking in late 1990, as mentioned above, with increases spreading from Tokyo to the other

major cities such as Osaka and Nagoya, and then to other cities of smaller size. The second

characteristic of this period is very high economic growth. The business cycle hit a trough in

November 1986 and the economy then expanded for 51 months until 1991. Real GDP grew at

an average annual rate of 5.5 percent during this period, driven by business fixed investment,

housing investment, and expenditure on consumer durables. The third characteristic is a rapid

increase in money supply and credit. The annual growth rate of money supply reached more
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than 10 percent in April-June 1987 as a result of monetary easing by the Bank of Japan

as well as financial deregulation. Also, bank borrowing and financing from capital markets

substantially increased in 1988 and 1989.

These three characteristics of the Japanese economy during the bubble period were closely

related with each other. In particular, land prices, bank borrowing, and business investment

were tightly linked through the credit cycle mechanism highlighted by Kiyotaki and Moore

(1997). Shimizu and Watanabe (2013), using information from land registry data, examine

empirically whether such a link indeed exists by looking at the market value of land owned by

firms and the amount of bank lending to those firms. They show that rapid price rises in the

late 1980s raised the value of land as collateral, making it possible for banks to extend larger

loans.

2.2 Causes of the real estate bubble in the 1980s

Previous studies on the real estate bubble in the 1980s identify the following as factors behind

the emergence and expansion of the bubble: (1) aggressive behavior of financial institutions;

(2) financial deregulation; (3) inadequate risk management by financial institutions; (4) the

introduction of capital adequacy requirements for banks; (5) protracted monetary easing by

the Bank of Japan; (6) taxation and regulation; (7) overconfidence and euphoria; (8) demo-

graphic changes; (9) over-concentration of economic functions on Tokyo, and Tokyo becoming

an international financial center.3 Obviously these factors are not mutually independent. On

the demand side, demographic changes, over-concentration, and euphoria are three important

factors, creating excess demand in the real estate market. On the other hand, taxation and

regulation were critically important on the supply side, because land taxation and land-related

regulations made land supply price-inelastic, thereby making it impossible to eliminate excess

demand without raising real estate prices. On the monetary side, expansionary monetary pol-

icy and banks’ loose lending behavior are two important factors that made it possible for firms

and individuals to have easy access to liquidity.4 In the rest of this section, we will focus on

the issues associated with demographic changes and taxation.

Demographic changes and housing demand Mankiw and Weil (1989) argue that de-

mographic changes, such as baby booms and busts, have an impact on housing demand and

therefore on housing prices. This directly follows from the Ando-Modigliani life cycle hypothe-

sis; namely, people buy houses during their working career and sell them in old age. A similar

idea has recently been proposed by Nishimura (2011), who argues that the real estate bubble in

3See Okina et al. (2001), Okina and Shiratsuka (2002), and Shiratsuka (2005) for more details on each factor.
4See Ueda (1998), Hoshi and Kashyap (2000), and Baba et al. (2005) on banks’ lending behavior during the

bubble and its burst.
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the 1980s and its collapse in the 1990s were caused, at least partially, by demographic changes.

His argument is based on a simple comparison of the inverse dependency ratio (i.e., the ratio

of the working-age population between 15 and 64 years of age to the rest of population, who

are dependent on the working-age population) and real land prices. The inverse dependency

ratio hit a trough in 1980 and exhibited a gradual increase until reaching a peak in 1990, when

the children of the post-World War II baby boomers reached working age. The ratio then

started to decline again from 1990 onward and has continued to do so in the more than two

decades since then. These ups and downs in the inverse dependency ratio more or less coincide

with those in real land prices. Nishimura (2011) interprets this as evidence that demographic

changes affect land prices through changes in land demand.

Employing international panel data on 22 countries for 1970-2009, Takáts (2012) finds that

an increase in the population by 1 percent is associated with an increase in real house prices

by 1 percent, and that an increase in the old age dependency ratio by one percent is associated

with a decrease in real house prices by 2/3 of a percent. These results imply that, on average,

demographic factors raised house prices in advanced economies by around 30 basis point per

annum in the past 40 years and will, on average, decrease house prices in advanced economies

by around 80 basis points per annum over the next 40 year.

Following Mankiw and Weil (1989), Shimizu and Watanabe (2010) estimate the weighted

average of housing demand of each generation, using the population share of each generation as

weights, for each prefecture from 1975 to 2008. They find that the change in housing demand

and the change in house price are positively correlated, implying that house prices tend to go

up in a particular prefecture when housing demand increases there due to demographic reasons.

Focusing on the bubble period (i.e., 1985-1990), they find that the cross-sectional correlation is

particularly high, although the very sharp price increases in prefectures with large populations,

such as Tokyo and Osaka, cannot be accounted for solely by demographic factor.

Land taxation and its reform in the early 1990s It has been pointed out by many prac-

titioners and researchers that the taxation system in Japan gave land owners an incentive to

hold land for speculative purposes, thereby making land supply inelastic to price changes.5 In

this respect, the following two characteristics of the Japanese tax system play a key role. First,

tax imposed on the holding of land has been extremely low in Japan when compared with other

countries. This is particularly true for agricultural land, and the rate of tax imposed on the

holding of agricultural land, even for agricultural land in urban outskirts, has been extremely

low. This low cost of holding land, especially agricultural land, results in the inefficient use

5In Japan, land is taxed at three stages: inheritance tax, registration and license tax, and/or real estate
acquisition tax are applied when land is acquired; and fixed property tax, urban planning tax, and/or special
land-holding tax are applied while land is held; corporation tax, income tax, and/or inhabitant tax are applied
to capital gains when land is transferred.
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Table 1: Chronology of policy actions related to the real estate bubble in the 1980s and its
collapse in the 1990s

1986 Tokyo Metropolitan Government introduces regulation on land transactions
1987 National Land Use Planning Act is amended

Closer monitoring of land transactions starts
1990 Local Property Tax Act is amended

Tax enforcement for agricultural land in urban areas is strengthened
1990 National Land Use Planning Act is amended

Surveillance of resale of properties within two years is introduced
1990 Ministry of Finance issues a directive and guidance requesting financial institutions

(1) to contain the increase in lending to property-related firms to within the increase
in total lending, and (2) to report lending to the real estate industry,
construction industry, and non-banks

1991 Land Value Tax Act is enacted
1992 Land Value Tax is newly introduced
1993 Cooperative Credit Purchasing Co. is established
1995 Tokyo Kyodo Bank (Japanese RCC) is established
1998 Act on Emergency Measures for Early Strengthening of Financial Functions is enacted

of land and in land being left unused, and makes holding land more profitable than holding

financial and other non-financial assets, promoting speculative land transactions. Second, as

for taxes on capital gains, the tax rates were not sufficiently high to prevent speculative trans-

actions; that is, for individuals, an income tax of 20 percent was imposed on capital gains up

to 40 million yen and a consolidated tax of 50 percent above this threshold: for companies,

apart from ordinary corporation tax, an additional tax of 20 percent was imposed on capital

gains on land held for ten years or less.

In the early 1990s, a series of tax reforms was implemented as a part of policy responses

to suppress speculative land transactions, following the publication of the report on “Basic

Issues Regarding Revisions in the Land Tax System” in May 1990 by the Land Tax System

Subcommittee.6 The chronology of tax reforms is presented in Table 1. The tax reforms

implemented in the early 1990s consist of three parts. First, in January 1992, property tax

rates were raised and a land value tax was newly introduced to make land less attractive as an

investment, thereby suppressing speculative land transactions. Second, capital gains taxation

was strengthened. In particular, a punitively high tax rate was imposed on capital gains

from transactions in land which has been held only for a short period. For example, in the

1991 reform, a separation tax of 30 percent was additionally introduced for capital gains on

transactions in land held by companies for two years or less. Finally, the tax rate associated

with the holding of land for agricultural purposes in urban areas was raised to the same level as

that for residential purposes in order to eliminate the special treatment of land for agricultural

6See Morinobu (2006) for more details on the tax reforms during this period.
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purposes. Practices and methods regarding land appraisals for inheritance tax purposes were

also amended.

3 Data and Empirical Strategy

3.1 Data

We use a unique dataset that we compiled from individual listings in a widely circulated real

estate advertisement magazine, which is published on a weekly basis by Recruit Co., Ltd.,

one of the largest vendors of residential lettings information in Japan. The dataset covers

the Greater Tokyo Area for the period 1986 to 2009, thus including the bubble period in

the late 1980s and its collapse in the first half of the 1990s. It contains 724,416 listings for

condominiums and 1,602,918 listings for single family houses.7 In this paper we will use data

only for condominiums. The Greater Tokyo Area covered in the dataset includes the 23 special

wards of Tokyo, other areas making up the Tokyo Metropolis, as well as adjacent cities and

suburbs. According to Shimizu et al. (2004), the dataset covers more than 95 percent of all

transactions in the 23 special wards (i.e., central Tokyo), while the coverage for the other areas

is somewhat more limited. This dataset has been used in a series of papers, including Shimizu

et al. (2010), which compares hedonic and repeat-sales measures in terms of their performance.

3.2 Empirical strategy

A widely used approach to deal with product heterogeneity in terms of quality is hedonic

analysis, which has been applied in a number of studies to analyze real estate prices. The core

idea of hedonic analysis is that the value of a product is the sum of the values of individual

product characteristics. For example, Shimizu et al. (2010) start their analysis by assuming

that the value of a house is the sum of the values of attributes such as its floor space, its age,

the commuting time to the nearest station, and so on, and run hedonic regressions using these

attributes as independent variables.

This idea has important implications regarding the shape of the cross-sectional distribution

of house prices. To show this, let us start by assuming that the price of house i at a particular

point in time, which is denoted by Pi,8 is the sum of K components:

Pi = F (Xi1, Xi2, . . . , Xik, . . . , XiK) (1)

7The dataset contains full information about the evolution of the posted price for a housing unit from the
week when it was first listed until the final week when it was removed because of a successful transaction. In
this paper, we only use the price in the final week, since this can be safely regarded as sufficiently close to the
contract price. The number of listings shown in the text does not include those prices listed before the final
week.

8Note that the subscript for time is dropped here to simplify the exposition.
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where Pi and Xik are both random variables and Xi1, . . . , XiK are assumed to be independent

from each other. Furthermore, we assume a multiplicative functional form such that

Pi =
K∏

k=1

Xik. (2)

Taking the logarithm of both sides of this equation leads to

lnPi =
K∑

k=1

xik, (3)

where xik ≡ lnXik. This equation appears frequently in hedonic analyses of house prices. It

simply states that the price of a house is equal to the sum of K random variables.

Given this setting, the central limit theorem tells us that the sum of these random variables

converges to a normal distribution if the number of attributes, K, goes to infinity. Let us

denote the variance of xik by s2
k and define the average variance s̄2

K as

s̄2
K ≡ 1

K

(
s2
1 + s2

2 + · · · + s2
K

)
.

Then, according to the Lindberg-Feller central limit theorem, the sum of random variables∑K
k=1 xik converges to a normal distribution as K goes to infinity, if the average variance

s̄2
K converges to a finite constant (namely, limK→∞ s̄2

K = s̄2) and the following condition is

satisfied:

lim
K→∞

maxk≤K{sk}
Ks̄K

= 0. (4)

In other words, the theorem states that the sum of random variables, regardless of their form,

will tend to be normally distributed. A notable feature of this result is that it does not

require that the variables in the sum come from the same underlying distribution. Instead, the

theorem requires only that no single term dominates the average variance, as stated in (4). Put

differently, condition (4) states that none of the random variables is dominantly large relative

to their sum.9 A famous textbook example of the central limit theorem is the distribution of

persons’ height. The height distribution of, say, mature men of a certain age can be considered

normal, because height can be seen as the sum of many small and independent effects. Similarly,

the log price of houses will be normally distributed if house prices are determined as the sum

of many small and independent effects.

The above argument suggests that the lognormal distribution can be seen as a benchmark for

the cross-sectional distribution of house prices. However, some previous studies on house price

distributions find that the actual distributions have fatter tails than a lognormal distribution.
9For more on this theorem, see Feller (1968). Greene (2003) provides a compact description of various versions

of the central limit theorem including this one.
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Figure 2: House price distribution in 2008

For example, McMillen (2008), using data on single family houses in Chicago for 1995, shows

that the kernel density estimates for the log price are asymmetric, with a much fatter lower tail.

Against this background, we examine the extent to which the house price distribution deviates

from a lognormal distribution using our observations for 2008. The results are presented in

Figure 2, where the left panel shows the probability density function (PDF), with the horizontal

axis representing the yen price in logarithm and the vertical axis representing the corresponding

density, also in logarithm. The empirical distribution is shown by the red line, while the

lognormal distribution with the same mean and standard deviation is shown by the black

dotted line. The figure indicates that the tails of the empirical distribution are fatter than

those of the lognormal distribution. In particular, the upper tail of the empirical distribution

is much fatter than that of the lognormal distribution. To examine the differences in the

upper tail more closely, we accumulate the densities from the right (upper) tail to produce the

cumulative distribution function (CDF), which is shown in the right panel. In this panel, the

value on the vertical axis corresponding to the value of 9.2 on the horizontal axis, for example,

is 0.01, meaning that the fraction of houses whose prices are equal to or higher than that price

level is 1 percent. We now see more clearly that the upper tail of the empirical distribution is

fatter than that of the lognormal distribution. For example, the fraction of housing units whose

price deviates from the mean by more than 3σ is about 1.47 percent, while the corresponding

number for the lognormal distribution is only 0.26 percent.

What causes the empirical distribution to deviate from the benchmark (i.e., the lognormal

distribution)? This is the main topic we address in this paper. Our hypothesis is that some of

the factors that determine house prices are dominantly volatile, so that condition (4) is violated.

Denoting these dominant factors by vector Zi, the house price distribution, Pr(Pi = p), can be

decomposed as follows:

Pr(Pi = p) =
∑

z

Pr(Pi = p | Zi = z) Pr(Zi = z). (5)
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Note that the house price distribution conditional on Zi, namely Pr(Pi = p | Zi = z), should be

a lognormal distribution, since the dominant factors are now fully controlled for. This means

that the right-hand side of equation (5) is a weighted sum of lognormals, with the weights being

given by Pr(Zi = z). We know that the sum of lognormals with different means and variances

is no longer a lognormal (see, for example, Feller (1968)), and the hypothesis we examine is that

this is why the house price distribution deviates from the benchmark. Given this hypothesis,

we proceed as follows in the remainder of the paper: we first specify the dominant factors and

then eliminate them, thereby constructing prices that are adjusted for these factors; finally, we

examine whether these adjusted prices follow a lognormal distribution.

Diewert et al. (2010) argue that there are three important price determining characteristics:

the land area of the property; the livable floor space area of the structure; and the location

of the property. Similarly, previous studies on house prices in Japan, including Shimizu et al.

(2010), find that the floor space of a housing unit (especially in the case of condominiums) and

its location play dominantly important roles in determining its price. This empirical evidence

suggests that the size and the location of a property are key candidates for the Z variables. We

will identify and eliminate the size effect in the next section, and the location effect in Section

5.

4 Size-adjustment to House Prices

4.1 Distribution of unadjusted house prices

Figure 3 presents the PDFs and CDFs of the cross-sectional price distribution for each year

from 1986 to 2009. To make the price distributions in different years comparable, we normalize

the log prices in year t by subtracting the mean in year t (i.e., the mean of log prices in year t)

and dividing by the standard deviation in year t (i.e., the standard deviation of log prices in year

t). The lognormal lines in the figure represent the CDF of a standard lognormal distribution.

Note that the CDFs are constructed in the same way as in Figure 2, that is, the value on the

vertical axis corresponding to a price level is the sum of the densities above that price level.

The first thing we see from the figure is that, as in Figure 2, the PDFs and the CDFs show

fatter upper tails than a lognormal distribution. More importantly, we see that the deviation

from a lognormal distribution tends to be larger for the late 1980s and the first half of the

1990s. Specifically, the PDFs in these years are substantially skewed to the right, indicating

that during the bubble period house prices did not rise by the same percentage for every

housing unit; instead, price increases were concentrated in particular housing units, so that

relative prices across houses changed significantly.

The CDFs in this figure provide more detailed information regarding the shape of the price

distributions. We see that the CDF for each year forms an almost straight line in this log-

12
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Figure 3: House price distributions by year

log graph, implying that the house price distribution is well approximated by a power law

distribution (or a Pareto distribution) at least in the tail part, the PDF and CDF of which are

given by

Pr(Pit = p) =
ζtm

ζt
t

pζt+1
; Pr(Pit ≥ p) =

(
mt

p

)ζt

; p > mt > 0 (6)

where Pit denotes the price of house i in period t, and ζt and mt are time-variant positive

parameters.10 The shape of a power law distribution is mainly determined by the parameter

ζt, which is referred to as the exponent of the power law distribution. Smaller values for ζt

imply fatter tails. Note that the CDF given in (6) implies that

lnPr(Pit ≥ p) = −ζt ln p + ζt lnmt.

10See Gabaix (2008) for an extensive survey of empirical and theoretical studies on power laws in various
economic contexts such as income and wealth, the size of cities and firms, and stock market returns.
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Figure 4: Power law distribution versus lognormal distribution

In other words, the log of the cumulative probability should be linearly related to the log price,

and the slope of a linear line between the two variables should be equal to −ζt. The CDFs in

Figure 3 suggest the presence of such a linear relationship between the log price and the log of

the cumulative probability. We see from the CDF in Figure 2 that ζ2008 is about 2.8. Similarly,

we find from the corresponding figures for the other years (which are not shown due to space

limitations) ζ also all take values of around 3.11

As a goodness-of-fit test, we employ the test proposed by Malevergne et al. (2011). Specif-

ically, we test the null hypothesis that, beyond some threshold u, the upper tail of the house

price distribution is characterized by a power law distribution,

Pr(P = p; α) = α · uα

pα+1
· 1p≥u

, against the alternative that the upper tail follows a lognormal beyond the same threshold,

i.e.,

Pr(P = p; α, β) =
[√

π

β
exp

(
α2

4β

)(
1 − Φ

(
α√
2β

))]−1 1
p

exp
(
−α ln

p

u
− β ln2 p

u

)
· 1p≥u,

11Note that we cannot obtain estimates for ζt from Figure 3. The CDFs in Figure 3 are for normalized prices,
which are defined by [Pit exp(−µt)]

1/σt , where µt and σt are the mean and the standard deviation in year t.
Therefore, the slope of each CDF in Figure 3 is given by σtζt (rather than ζt), if the original price follows the
power law distribution given by (6). Taleb (2007) provides many examples of power law distributions. For
example, the net worth of Americans follows a power law distribution with an exponent of 1.1; the frequency
of the use of words follows such a distribution with an exponent of 1.2; the population of U.S. cities has an
exponent of 1.3; the number of hits on websites has an exponent of 1.4; the magnitude of earthquakes has an
exponent of 2.8; and price movements in financial markets have an exponent of 3 (or lower). The exponents for
the house price distributions estimated here are greater than most of these figures, implying that the tail parts
of the house price distributions are less fat than those in the other examples of power law distributions.
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where Φ(·) represents the CDF of a standard normal distribution. Note that this is equivalent

to testing the null that the upper tail of the log price follows an exponential distribution against

the alternative that it follows a normal distribution. For this transformed test, Del Castillo and

Puig (1999) have shown that the clipped empirical coefficient of variation ĉ ≡ min(1, c) provides

the uniformly most powerful unbiased test, where c is the empirical coefficient of variation.

The result of our goodness-of-fit test is presented in Figure 4, where the horizontal axis

represents the year and the vertical axis represents the number of observations above the

threshold u. For example, 103 on the vertical axis means that the threshold u is set such that

the number of observations above u is 103. A black square indicates that the null is rejected at

the 1 percent significance level for a particular year-threshold combination, while a white square

indicates that the null is not rejected at the same significance level. The figure shows that a

power law distribution provides a good approximation for the 500 most expensive houses, while

a lognormal distribution provides a better approximation for the set of less expensive houses.

4.2 Distribution of house sizes

Previous studies on wealth (or income) distributions across households have typically found

that those distributions are characterized by fat upper tails, and that they follow a power law

distribution (see Pareto (1896)). Given that houses form an important part of households’

wealth, it may be not that surprising that we detect a similar pattern in the house price

distribution. However, the result that house prices follow a power law distribution is not

consistent with the argument based on the central limit theorem. Why do house prices follow

a power law distribution rather than a lognormal distribution? As a first step to address this

question, we decompose the house price distribution as follows:

Pr(Pit = p) =
∑

s

Pr(Pit = p | Si = s) Pr(Si = s), (7)

where Si represents the size of housing unit i, which is measured by the floor space of that unit.

The term Pr(Si = s) represents the distribution of house sizes, while the term
∑

Pr(Pit = p |
Si = s) represents the distribution of house prices conditional on house size. An important

thing to note is that even if each of these conditional distributions is lognormal, the weighted

sum of lognormals with different mean and variance is not a lognormal distribution. This is a

potential source of the power law tails that we observed in our house price data.

We start by examining the term Pr(Si = s) in equation (7). Figure 5 presents the CDFs

of house sizes for each year, with the floor space, measured in square meters, on the horizontal

axis and the log of the CDF on the vertical axis. We see that the CDF for each year is close to

a straight line in this semi-log graph, implying that the size distribution can be approximated

15
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Figure 5: Cumulative house size distributions

by an exponential distribution whose PDF and CDF are given by

Pr(Si = s) = λt exp (−λts) ; Pr(Si ≥ s) = exp (−λts) ; λt > 0. (8)

Note that the CDF shown above implies that

lnPr(Si ≥ s) = −λts,

so that the log of the CDF depends linearly on house size. This is what we see in Figure 5.

The slope of the CDF line, namely the value of λ, is almost identical for the different years and

is somewhere around 0.04.

The fact that house sizes follow an exponential distribution implies that the tails of the size

distribution are less fat than those of the price distribution. For example, for 2008, the fraction

of housing units whose size deviates from the mean by more than 3σ is only 0.94 percent, while

the corresponding number for the price distribution is 1.47 percent.12

4.3 Size-adjusted prices

We now turn to the relationship between the price of a house and its size, which is represented

by the conditional probability Pr(Pit = p | Si = s) in equation (7). We propose a hedonic

model which is consistent with the fact that house prices and sizes follow, respectively, a power

law distribution with an exponent of ζt and an exponential distribution with an exponent of

λt. That is, the log prices are determined by

lnPit ∼
(

λt

ζt

)
Si + ϵit, (9)

12To see why the tails of the house size distribution are less fat than the tails of the price distribution, consider
a simple example in which household A has 100 times as much wealth as household B, so that A spends 100
times as much money on a house as B. What does A’s house look like? Does it have a bathroom that is 100 times
larger than the one in B’s house? Alternatively, does it have 100 bathrooms? Needless to say, neither is true,
because even a person of A’s wealth would have little use for such a gigantic bathroom (or so many bathrooms).
Instead, it is more likely that the size of A’s house (and therefore the size and/or number of its bathroom) is
only, say, 10 times greater and, consequently, the unit area price of A’s house is 10 times higher than B’s.
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Figure 6: Relationship between house size and price

where ϵit is a normally distributed random variable, which, as we saw in Section 3.2, can be

interpreted as the sum of many small and independent factors. To show equation (9), we first

note that the PDF of the exponential distribution given in (8) implies that (λt/ζt)Si follows

an exponential distribution with an exponent of ζt if Si itself is an exponential distribution

with an exponent of λt. Next, we can show that the sum of the random variable that follows

an exponential distribution and the random variable that follows a normal distribution is well

approximated by the exponential distribution when the sum takes large values (because of the

much fatter tails of an exponential distribution). Combining the two, the right-hand side of

(9) is well approximated by an exponential distribution with an exponent of ζt when the sum

of the two terms on the right-hand side takes large values. On the other hand, the fact that Pit

follows a power law distribution with an exponent of ζt implies that lnPit follows an exponential

distribution with an exponent of ζt. In this way we can confirm that each side of equation (9)

follows an identical distribution with an identical exponent.13

To empirically test the hedonic model given by (9), we first examine for a linear relationship

between the log price of houses and their size. The upper panels of Figure 6 show the floor

space on the horizontal axis and the median of the log price corresponding to that size on

the vertical axis. These panels indicate that there exists a stable linear relationship between
13The price-size relationship described by equation (9) provides an answer to the question regarding the choice

of functional form for hedonic price equations, which has been extensively discussed in previous studies such as
Cropper et al. (1988), Diewert (2003), and Triplett (2004). The novelty of our approach is that we derive this
functional form not from economic theory but from the statistical fact that house prices and sizes follow a power
law and an exponential distribution, respectively.
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Figure 7: Price-size regressions

the two variables. Furthermore, equation (9) implies that the per unit area price, P/S =

[exp(λ/ζ)S + positive constant]/S, decreases with S when S is small and increases with S

when S is sufficiently large, so that there should exist a U-shaped relationship between the per

unit area price and the house size. The lower panels of Figure 6, in which the vertical axis now

measures P/S, confirms this prediction.

Second, we run an OLS regression of the form

lnPit = atSi + bt + ηit (10)

to see whether the disturbance term ηit is indeed normally distributed as assumed in (9). The

regression results are presented in Figures 7 and 8. Figure 7 shows the estimates of a and b

for each year. The estimate of a is almost identical across years and is around 0.013, implying

that an increase in the house size by a square meter leads to a 1.3 percent increase in the house

price. More importantly, the estimate of a is very close to the value predicted by (9). That

is, the value of ζ is around 3, as we saw in Section 4.1, and the value of λ is about 0.04, as

we saw in Section 4.2, so that the coefficient on Si, namely λ/ζ, should be something around

0.013 (= 0.04/3). This is quite close to the point estimate of a for each year.14 Turning to the

estimate of b, this exhibits substantial fluctuations: it increases by more than 20 percent per

year from 1986 to 1990 and then declines by 10 percent per year from 1990 to 2002.

Figure 8 shows the CDFs of size-adjusted prices, which are defined by

P̃it ≡
[
Pit exp(−âtSi − b̂t)

]1/σ̂t

, (11)

where ât and b̂t are the estimates of at and bt, and σ̂t is the estimate for the standard deviation

of ηit. Note that the hedonic model given by (9) implies that P̃it should be a lognormal

14Note that the per unit area price, exp(aS + b)/S takes its minimum value when S is equal to 1/a. Given
the estimate of a, this implies that the per unit area price takes its minimum value when S = 1/0.013 ≈ 75,
which is consistent with what we see in the lower two panels of Figure 6.
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Figure 8: Cumulative distributions of size-adjusted house prices

distribution. The CDFs of the size adjusted prices are shown in the three panels on the right-

hand side of Figure 8, while the price distributions without size adjustments from Figure 3 are

replicated on the left-hand side. Comparing these two sets of CDFs, we see that the CDFs

of the size-adjusted prices are much closer to the CDF of a lognormal distribution. More

specifically, the CDFs for 2002 to 2009, which are shown in the lower right panel, are almost

identical to the CDF of a lognormal distribution. The same applies to the CDFs for 1994 to

2001, which are shown in the middle right panel. However, the CDFs for 1986 to 1993, which

are presented in the upper right panel, are still far from the CDF of a lognormal distribution,

although they are slightly closer to it than the CDFs of the non-adjusted prices.

5 Location Adjustment to House Prices

The analysis in the previous section suggested that size-adjusted prices followed a lognormal

distribution at least for quiet periods without large price fluctuations. This is consistent with
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Figure 9: Dispersion of ar, br and σr across pixels

the idea that, as stated in (7), the power law tails of the original prices stem from the mixture of

lognormal distributions with different mean and variance. At the same time, the analysis in the

previous section showed that the fat tails of the price distribution remain largely unchanged for

the bubble period (i.e., the late 1980s and the first half of the 1990s) even after controlling for

the size effect. This suggests that there still remains some mixture of lognormal distributions.

In this section, we test the hypothesis that the power law tails of the size-adjusted price

distribution during the bubble period arise due to the mixture of different lognormal distribu-

tions corresponding to different regions. To do so, we start by decomposing the size-adjusted

price distribution into the sum of conditional distributions:

Pr
(
P̃irt = p

)
=

∑
θ

Pr
(
P̃irt = p | θrt = θ

)
Pr

(
θrt = θ

)
, (12)

where P̃irt denotes the size-adjusted price for a house located in region r, which is defined by

P̃irt ≡ Pirt exp(−artSir − brt). The vector of parameters θrt is defined by

θrt ≡ (art, brt, σrt), (13)

where the parameters art, brt, and σrt are the coefficient on the house size variable, the constant

term, and the standard deviation of the disturbance term in equation (10), but it is assumed
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in this section that they could differ depending on the location. The location effect is fully

controlled for in the conditional distributions Pr(P̃irt = p | θrt = θ), so that they should be

lognormal. According to equation (12), the distribution of P̃irt is a mixture of these lognormal

distributions, each of which is for a different region.

We first examine the distribution of θrt across different regions. Specifically, we divide the

Greater Tokyo Area into pixels of 0.033 degrees latitude and 0.033 degrees longitude or roughly

3.3 by 3.3 km.15 Then, using size-adjusted prices within a pixel, we run a regression of the

form

lnPirt = artSir + brt + ηirt (14)

for each combination of r and t and obtain θ̂rt ≡ (ârt, b̂rt, σ̂rt). The regression results are

presented in Figure 9.16 The three panels on the left show the CDFs of ârt, while the panels

in the middle and those on the right respectively show the CDFs of b̂rt and σ̂rt. The CDFs of

ârt indicate that a is less dispersed across pixels for the period of the bubble and its collapse

(1987-1995) than in the other years. On the other hand, the CDFs of b̂rt and σ̂rt show that

these parameters are more highly dispersed during the same period, implying that the sharp

price hike during the bubble period was concentrated in particular pixels. Put differently, the

housing market was segmented during this period.

Next, we investigate whether the conditional distributions are close to a lognormal distri-

bution. Using the estimates of θrt obtained from the regression, we calculate the size-adjusted

prices for each pixel, which is given by:

P̃irt ≡
[
Pirt exp(−ârtSir − b̂rt)

]1/σ̂rt

. (15)

The estimated CDFs of P̃irt are presented in Figure 10 for the years 1986, 1990, 1994, 1998,

2002, and 2006. Note that each of the six panels contains four different lines, each of which

corresponds to a different pixel size, namely 4.190 by 4.190 degrees, 0.524 by 0.524 degrees,

0.263 by 0.263 degrees, and 0.033 by 0.033 degrees. The results for 1998, 2002, and 2006

indicate that the CDFs are very close to a lognormal distribution, irrespective of pixel size.

This is not very surprising given that, as we saw in the previous section, the CDFs in these

years were already close to a lognormal distribution before controlling for the location effect.

For the period of the bubble and its collapse, we see more interesting results: for 1986, 1990,

and 1994, the estimated CDF tends to be closer to a lognormal distribution the smaller the

pixel size.17

15Note that one degree is approximately 100 km.
16In conducting these regressions, we use only those pixels with more than twenty transactions in a year. The

number of pixels used in the regressions is about 300 for each year.
17It should be noted that the estimated CDF does not fully converge to a lognormal even in the case of the
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Figure 10: Cumulative distributions of size-adjusted house prices for different pixel sizes

In sum, the analysis in this section shows that the distribution of size-adjusted prices within

a pixel is fairly close to a lognormal distribution even for the period of the bubble and its

collapse, but its mean and standard deviation are highly dispersed across different pixels. As

a result, the sum of these lognormals turns out to be far from a lognormal distribution during

this period. In other words, heterogeneity across pixels in terms of the mean and standard

deviation is the source of the fat upper tail of the size-adjusted price distribution during the

period of the bubble and its collapse.

smallest pixels. It may be the case that the CDF becomes much closer still to a lognormal distribution if we
were able to reduce the pixel size even further. Unfortunately, we cannot do so because of the limited number
of observations.
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6 Summary and Some Policy Implications

In this paper, we found that the cross-sectional distribution of house prices in the Greater

Tokyo Area has a fat upper tail and that the tail part is close to a power law distribution. On

the other hand, the cross-sectional distribution of house sizes measured in terms of floor space

has less fat tails than the price distribution and is close to an exponential distribution. We

proposed a hedonic model consistent with these findings and, using data for Greater Tokyo,

confirmed that size-adjusted prices follow a lognormal distribution except for the period of

the asset bubble and its collapse, for which the price distribution remains asymmetric and

skewed to the right even after controlling for the size effect. As for the period of the bubble

and its collapse, we found some evidence that the sharp price movements were concentrated in

particular areas, and that this spatial heterogeneity is the source of the fat upper tail.

The analysis in this paper shows that the cross-sectional distribution of size-adjusted prices

is very close to a lognormal distribution during regular times but deviates substantially from

a lognormal for the bubble period. This suggests that the shape of the size-adjusted price

distribution, especially the shape of the tail part, may contain information useful for the de-

tection of housing bubbles. That is, the presence of a bubble can be safely ruled out if recent

price observations are found to follow a lognormal distribution. On the other hand, if there

are many outliers, especially near the upper tail, this may indicate the presence of a bubble,

since such price observations are very unlikely to occur if prices follow a lognormal distribution.

This method of identifying bubbles is quite different from conventional ones based on aggregate

measures of housing prices, which are estimated either by hedonic or repeat-sales regressions,

and therefore should be a useful tool to supplement existing methods.
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