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Abstract
Are the changes in the future technology process, the so-called “news shocks,”

the main contributors to the macroeconomic fluctuations in Japan over the past
forty years? In this paper, we take two structural vector-auto-regression (SVAR)
approaches to answer this question. First, we quantitatively evaluate the relative
importance of news shocks among candidate shocks, estimating a structural vector-
error-correction model (SVECM). Our estimated results suggest that the contribu-
tion of the TFP news shocks is nonnegligible, which is in line with the findings of
previous works. Furthermore, we disentangle the source of news shocks by adopting
several kinds of restrictions and find that news shocks on investment-specific tech-
nology (IST) also have an important effect. Second, to minimize the gap between
the SVAR approach and the Bayesian estimation of a dynamic stochastic general
equilibrium model, we adopt an alternative approach: SVAR with sign restrictions.
The SVAR with sign restrictions reconfirms the results that the news shocks are
important in explaining the Japanese macroeconomic fluctuations.
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1 Introduction

Are news shocks the main source of the Japanese macroeconomic fluctuations? Previous
works have presented different results. Beaudry and Portier (2005) employ a SVECM
with a combination of long-run and short-run restrictions to divide the TFP shocks
into surprise and news components. The news shock in their econometric model is the
shock that does not have an impact effect on the current TFP but increases the future
TFP several quarters after. They find that the estimated TFP news shock is a dark
horse behind the Japanese macroeconomic fluctuations, and that a negative news shock
occurred in the beginning at the 1990s which might have been relevant with the so-called
“lost decade.” Fujiwara, Hirose, and Shintani (2011) assess the importance of news shocks
based on an estimation of a dynamic stochastic general equilibrium (DSGE) model using a
Bayesian method. They introduced one-to-four-quarters-ahead TFP news shocks and find
that the TFP news shocks are nonnegligible but minor in explaining the macroeconomic
fluctuations in Japan.

The first purpose of this paper is to re-investigate whether news shocks are the major
source of the Japanese macroeconomic fluctuations. As a first step, extending the two-
variable SVECM in Beaudry and Portier (2005), we employ a SVECM with more variables
so that TFP news shocks compete with other candidate shocks. This is to respond to
the criticism that in a framework with too few shocks like that of Beaudry and Portier
(2005), the role of news shocks might be overemphasized. In the benchmark case, we
identify four shocks: surprise TFP shocks, IST shocks, TFP news shocks, and demand
shocks. Following Beaudry and Portier (2005), we identify TFP news shocks by imposing
a restriction that they do not have an impact effect, but might have long-run effects
on TFP. Furthermore, we impose an additional restriction that they do not have long-
run effects on IST. Our main finding is that TFP news shocks are the driving force of
the Japanese economic fluctuations over the last 40 years, accounting for more than 50
percent of variances of hours worked and investment. However, the contribution to output
and consumption is rather minor.

Furthermore, we disentangle the source of news shocks, which was not highlighted by
previous studies. We adopt the alternative identification schemes in line with Beaudry
and Lucke (2010), where the news shocks include the news on IST as well as on TFP.
Comparing their results with our benchmark case, we can assess the relative importance
of news shocks to TFP and IST. We find that IST news shocks are another crucial factor
in explaining postwar Japanese business cycles. This feature is not observed in the U.S.
data by Beaudry and Lucke (2010).

Our second purpose is to compare the results of two different approaches: SVAR and
the structural estimation of a DSGE model. Fujiwara et al. (2011) find that TFP news
shocks play a minor role, explaining less than 10 percent of real macro activities in Japan.
A direct comparison is difficult for several reasons. First, news shocks estimated by our
SVECM are somewhat different from those in Fujiwara et al. (2011). Our estimated news
shocks start to increase TFP around four to 32 periods after the stock market innovation,
while the news shocks in Fujiwara et al. (2011) like other previous DSGE works are built
until four periods ahead. Second, the treatment of the trend is different. In our SVECM,
we assume the number of stochastic trends based on the Johansen cointegration test and
explicitly incorporate the common cointegrating vector, while they examine the model
around the deterministic trend. Third, Fujiwara et al. (2011) investigate only news
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shocks on TFP, while we also examine the role of IST news. Fourth, only four types of
structural shocks are identified in our four-variable SVECM, while more types of shocks
are identified in their DSGE estimation.

Therefore, to narrow the gap between these two approaches, we employ an alternative
approach: SVAR with sign restrictions. SVAR with sign restrictions has the following
strengths. First, in contrast to the SVECM approach, the dependent variables do not
have to be set in a (log) differenced form because we do not need to rely on the long-run
restriction in this case. Therefore, the discrepancy originating from the trend assumptions
can be resolved. Second, the actual timing of the future TFP increase can be modified.
In the DSGE literature, the timing is around one to four periods ahead, while those of our
estimated news shocks in SVECM are from four to 32 periods.1 Therefore, to identify the
same types of news shocks in the VAR system, we follow the same assumptions made by
the DSGE literature. Third, we are able to identify only a subset of the structural shocks
and thus need to impose much fewer restrictions. This enables us to estimate a larger
VAR with more variables. We estimate a seven-variable VAR model in level and identify
news shocks as ones that increase TFP from one to four periods ahead. The estimated
results under SVAR with sign restrictions lie between the results of our SVECM and
those of Fujiwara et al. (2011), showing that the news shocks explain large portions of
Japanese macroeconomic fluctuations. We also find that the contribution of news shocks
is larger in the U.S. economy than in the Japanese economy.

Section 2 describes the SVECM system and data. The identification procedure and
benchmark results are presented in Section 3, while Section 4 discuss the source of the
news shocks. Section 5 conducts the robustness check. Section 6 compares the SVAR
results with sign restrictions with those in Fujiwara et al. (2011), and Section 7 concludes.

2 Set up

2.1 SVECM

In this subsection, we briefly explain our SVECM. The basic model of order p has the
form

yt = A1yt−1 + A2yt−2 + · · · + Apyt−p + ΦDt + ut, (1)

where yt = (y1t, · · · , yKt)
′ is a vector of K observable endogenous variables, Ais are

(K × K) coefficient matrices, Dt is a deterministic term, and ut = (u1t, · · · , uKt)
′ is a

vector of unobservable error terms. We consider the case where the variables in yt are
integrated of order one. If these variables have a common stochastic trend, there is a
possibility that one of their linear combinations is I(0). When they are cointegrated, the
vector error-correction representation of the process can be written as

∆yt = Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ΦDt + ut, (2)

where Π = −(IK − A1 − · · · − Ap) and Γi = −(Ai+1 + · · · + Ap) for i = 1, · · · , p − 1.
Because ∆yt does not contain stochastic trends, Πyt−1, which must be I(0), is the only
one that includes I(1) variables and contains the cointegration relations. If rank(Π) = r,

1For example, see Schmitt-Grohé and Uribe (2009) and Khan and Tsoukalas (2009).
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Π can be written as a product of (K × r) matrices α and β with rank(α) = rank(β) = r
as follows: Π = αβ′.

∆yt = αβ′yt−1 +

p−1∑
j=1

Γj∆yt−j + ΦDt + ut, (3)

where α and β are K × r matrices of loading coefficients and co-integrating vectors,
respectively, and the Γjs, j = 1, · · · , p−1, are K×K coefficient matrices. From Johansen’s
version of Granger’s Representation Theorem, if yt is generated by a reduced form as in
equation (3), it has the following moving average representation:

yt = L
t−1∑
i=1

εi +
∞∑
i=0

Ξ∗
i (ut−i + ΦDt−i) + y∗

0, (4)

where y∗
0 is a vector of initial variables;

L ≡ β⊥

[
α′
⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′
⊥

is a K × K matrix with rank K − r; α⊥ and β⊥ denote the orthogonal complements of
α and β, respectively, and the matrices Ξ∗

i , i = 1, · · · ,∞, are absolutely summable. L
is the matrix that represents the long-run effects of the forecast error impulse responses,
whereas Ξ∗

i contains the transitory effects. In line with the literature, we assume that
the covariance matrix of the vector of structural shocks, εt, is the identity matrix IK .
Since the covariance matrix of ut is nonsingular, there exists a nonsingular matrix B such
that ut = Bεt. Therefore, in terms of structural interpretation, L can be interpreted as
the long-run effect matrix of the structural shocks εt, whereas B is the corresponding
short-run matrix. Since the number of endogenous variables is K, we need to impose
additionally K(K−1)

2
restrictions on B and L to identify K types of structural shocks.

The restrictions imposed should be economically meaningful.

2.2 Choice of endogenous variables and data

In our benchmark case, we include four endogenous variables in the SVECM: TFP, an
IST variable, stock prices, and an economic activity variable, and wish to identify four
shocks: surprise TFP shocks, surprise IST shocks, TFP news shocks, and demand shocks.
The first variable, measured TFP, is necessary to identify surprise TFP shocks and TFP
news shocks. Regarding the second variable, following previous studies in the literature
such as Braun and Shioji (2007), we use the inverse of the real investment price to identify
IST shocks. The third variable, stock prices, is included because it is a forward-looking
variable which reflects news about the future and thus is suitable to identify TFP news
shocks. The fourth variable is one of the followings: hours worked, output, investment,
and consumption. This variable is included for a twofold purpose: it captures demand
shocks, and it allows us to analyze the effects of structural shocks, especially TFP news
shocks, on the Japanese macroeconomic fluctuations.

We employ quarterly data for the period from 1960-Q1 to 2002-Q4. Data on out-
put, consumption, investment, and hours worked are taken from Braun, Esteban-Pretel,
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Okada, and Sudo (2006). These variables are seasonally adjusted, in logs, and in per
capita form using data for the population aged-15-and-over from Japan’s Labor Force
Survey.

TFP measures are constructed using data on output, hours worked, and capital ser-
vices by Braun et al. (2006) and the capacity utilization rate in manufacturing (that is,
the operating ratio) calculated by the Ministry of Economy, Trade and Industry. We as-
sume a Cobb-Douglas production function. The capital share, 0.363, is based on Braun
et al. (2006). The inverse of the real price of investment is the log-difference of the
68SNA deflator for consumption and fixed non-residential investment. As an alternative
measure, we use the price index of investment goods of the Corporate Goods Price Index
for quality-adjusted investment. The stock prices are the Nikkei 255 Index. This variable
is deflated by the 68SNA deflator for consumption, and is in per capita form and in logs.

3 Are TFP news shocks important?

In this section, we identify and quantify the relative importance of TFP news shocks to
the Japanese business cycles. Other shocks are surprise TFP shocks, IST shocks, and
demand shocks. As noted in the previous section, for a four-variable SVECM, we need
to impose six restrictions on the short-run and long-run matrices B and L. We follow
Beaudry and Portier (2005) in identifying the unexpected and news shocks to TFP. To
compare our result with the existing empirical works on Japan, we confine ourselves to
the case of news on TFP. In the next section we examine the case in which news might
also contain information on future IST.

3.1 Benchmark identification

In this subsection, we explain our benchmark identification scheme. The order of depen-
dent variables is as follows: TFP, the IST variable, stock prices, and the macro activity
variable. Our objective is to identify the surprise TFP shocks, IST shocks, TFP news
shocks, and demand shocks. In our benchmark identification, to identify four shocks,
we impose six restrictions which can be summarized in the following three assumptions,
where bij and lij denote the ij-th element of B and L, respectively.

• Assumption A1 (b12 = b13 = b14 = 0): Only surprise TFP shocks may have
contemporaneous effects on TFP.

• Assumption A2 (l14 = l24 = 0): Demand shocks have no long-run effects on TFP
and the relative price of investment.

• Assumption A3 (l23 = 0): TFP news shocks do not affect the relative price of
investment in the long-run.

Assumption A1 allows us to distinguish surprise TFP shocks with other shocks. As-
sumption A2 is sufficient to identify demand shocks from other shocks. The demand
shocks can be any shocks that do not have contemporaneous or permanent effects on the
technology processes, e.g. they may include temporary changes in consumer demand,
monetary shocks, government purchase shocks, and so on.
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We call the third structural shock “TFP news shocks” because they may contain
TFP processes. TFP news shocks are identified by postulating a zero effect on TFP
on impact (b13 = 0). Note that we do not impose any restriction on the effect of news
shocks on TFP in the long run. No effect on TFP in the short run can isolate news
shocks from surprise TFP shocks.2 Assumption A3 allows us to isolate IST news from
TFP news shocks. Therefore, the second shock includes both the surprise and anticipated
components of IST, while the third shock only includes the effect of the news on TFP.3

In sum, assumptions A1, A2, and A3 are sufficient to identify four structural shocks.
We summarize in Table 1 the restrictions imposed on the short-run matrix B and the
long-run matrix L under the benchmark identification scheme:

[Table 1 is inserted here.]

3.2 Results

In our benchmark case, we consider four four-variable systems in which the first three
variables are tfp (TFP), pi (the inverse of the real price of investment), sp (stock prices),
and the fourth one is the macro activity variable x with x ∈ {h, y, i, c} where h, y, i, and
c are hours worked, output, investment, and consumption, respectively. We call each of
these four systems the x system. We used four lags in the estimation of the four systems
based on Akaike’s information criteria (AIC). As for the trends, a number of theoretical
papers imply that two stochastic trends representing TFP and IST progresses should be
considered. However, the Johansen cointegration tests suggest only one cointegrating
vector. Therefore, we assume one cointegrating vector.4 We have four systems with four
macro activities and hence, we substitute out the macro activity variable and replace it
by another macro activity variable in each estimation.

In this and the subsequent sections, we show the forecast error variance decomposition
(FEVD) and impulse response function (IRF) under the benchmark identification scheme.
FEVDs are useful tools to show the percentage contribution of structural shocks to the
forecast error variances of dependent variables. We set the business cycle horizon as 32
and 40 quarters when analyzing FEVD and IRF, respectively. IRFs of the h system under
the benchmark scheme are shown in Fig. 1, where we have plotted IRFs of four variables
in rows and shocks in columns.

The first column shows the IRFs of four variables to the surprise TFP shocks. In
the first row, there is an initial jump of tfp in response to the surprise TFP shocks, and
the effect remains permanently. In the second row, the effect on the real investment
price is significantly positive only in the short run. The fourth row is the macro activity
response to the surprise TFP shocks. The response sign of hours worked in the short run
is negative.5

2We allow for the possibility that news shocks can change the relative price of investment goods on
the impact period. This is because TFP news shocks can influence the relative price of investment goods
in the case that the relative price of investment goods does not purely reflect IST. To overcome this
problem, we also try an alternative measure in the robustness check.

3In the benchmark identification system, we do not restrict the long-run effect on the fourth variable
because any shock can permanently affect the macro activities.

4Schmitt-Grohé and Uribe (2011) document that one common stochastic trend in neutral and
investment-specific productivity can be a new source of business-cycle fluctuations.

5There is no consensus on the response of hours worked to the TFP shocks. This result is consistent
with Gaĺı (1999) and Francis and Ramey (2009).

6



Surprise IST shocks in the second column permanently increase the relative investment
price in the second row. Estimated IST shocks seem to cause a positive response from
future TFP.

IRFs to the TFP news shocks are listed in the third column. The effects of news
shocks on TFP in the first row are similar to those found in Beaudry and Portier (2005,
2006) and Beaudry and Lucke (2010). Although the response of TFP fluctuates slightly
in the short run, it does not increase for around three years. In the h system, this seems
to convey information about TFP growth that starts 12 quarters in the future.6 As in
the previous literature, there is an immediate expansion in hours worked in response to
news shocks, which peaks around four to six quarters later.

The effect of demand shocks is plotted in the fourth column. The point estimate of
hours worked shows a positive response, but the results are not significant.

[Fig. 1 is inserted here.]

IRFs under the y, i, and c systems are shown in Fig. 2. The first, second, and third
rows are IRFs under the y, i, and c systems, respectively. To focus on effects of the TFP
news shock, we plot the measured TFP processes after the stock price innovation in the
first column, and show the IRFs of macro activities to four structural shocks from the
second through fifth columns.

The first column displays IRFs of tfp to the TFP news shock. The shapes are similar
and consistent with those in the h system. We can observe the so-called “news-driven
business cycle” in the fifth column: even though there is no initial innovation of technology
in the first column, the macro activities show positive movement. The only exception
is c, which is not consistent with the theory in the literature.7 Consumption actually
increases in the long run but shows a negative response in the short run. IRFs to two
surprise shocks are displayed in the second and third columns. We can observe the
positive responses to the surprise shocks in all cases. The effect of demand shocks is
plotted in the fifth column. There are positive responses from output and consumption,
which are consistent with the restriction and theory.

The timings of the actual increases of TFP are different among the systems. In the case
of the y system, the actual increase of TFP is seen around 30 quarters later, while TFP
starts to increase 8 and 3 quarters later in the i and c systems, respectively. The timing of
news shocks has been discussed extensively in the literature. By construction, we impose
minimal restrictions on our econometric model and, within the current VECM, cannot
impose the actual timing with which news is conveyed. However, the news components
in the DSGE literature are often assumed to be up to 4 quarters ahead. Therefore,
in the latter section, we also examine the VAR with sign restriction to investigate the
relationship between the DSGE results.

[Fig. 2 is inserted here.]

Fig. 3 plots the FEVDs of four macro variables in each x system for x ∈ {h, y, i, c}
under the benchmark identification scheme. Calculating the forecast error variances, we
investigate the importance of the candidate shocks to macroeconomic activities.

6Beaudry and Portier (2005) use annual data, and their measured TFP starts to increase in four
years.

7For example, see Beaudry and Portier (2005), Jaimovichi and Rebelo (2009), and Kobayashi and
Nutahara (2010).
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We observe the following from the table. The first and most important finding is that
the TFP news shocks play the most crucial role in the h and i systems. The contribution
of the TFP news shocks is dominant, accounting for more than 40 percent of hours
worked and investment in all horizons. Around 20 percent of the output movement is
explained by the TFP news shocks in all horizons, while the contribution to the variance
of consumption is negligible.

Second, the contribution of the estimated IST shocks accounts for a large portion of all
variables’ variances. In the case of output and investment, large movements are explained
by the IST shocks especially in the long run. The short-run variance of consumption is
mostly explained by the IST shocks.

Third, surprise TFP shocks explain a considerable part of consumption movement
and some fraction of output. In all horizons, the share of output variance is between 10
and 30 percent. The contribution of surprise TFP shocks to the forecast error variances
of consumption become larger in the long run.

Fourth, demand shocks account for more than half of the movement of output, espe-
cially in the very short run, but they account for a very small fraction of the movement
of hours and investment. Demand shocks play some role in explaining the consumption
movement.

To summarize this subsection, in the benchmark system, we find that TFP news
shocks and IST shocks dominate the FEVDs of almost all macro activity measures. Sur-
prise TFP shocks account for non-negligible portions of output and consumption vari-
ances. Demand shocks are important in explaining output variance in the short run.

[Fig. 3 is inserted here.]

3.3 Historical Decomposition

In this subsection, we provide the historical decomposition results of shocks to macro ac-
tivities. With these results, we can analyze the direction and magnitude of each structural
shock for any given date or specific period.

The historical decomposition is presented in Fig. 4. All the data series are displayed
in log-differences, excluding the effects of the initial five lags from 1960-Q1 to 1961-Q1
and the constant terms. The dashed line indicates the movements of the estimated macro
activities and the contribution of each shock to the historical movement of the data is
shown in the form of bar charts. One finding is that the innovations in stock prices play
a substantial role in explaining the behavior of hours worked, output, and investment.
Positive innovations during the bubble period and negative innovations in the early 1990s
are particularly remarkable. The latter finding is consistent with that of Beaudry and
Portier (2005), who also find that large negative TFP news shocks hit the Japanese
economy in the early 1990s.

[Fig. 4 is inserted here]

3.4 Other identification schemes

In this subsection, we check the robustness of the benchmark results by trying other
identifying restrictions. We maintain the following restrictions as in the benchmark case:
l23 = 0 and b13 = b14 = l14 = 0. The restriction l23 = 0 is necessary to isolate TFP

8



news shocks from IST, and restrictions b13 = b14 = l14 = 0 are necessary to distinguish
surprise TFP shocks with other shocks. We need two more restrictions to identify four
structural shocks. We choose one of them from l24 = 0 and b24 = 0, which are necessary
to isolate IST shocks from others. The last restriction is chosen from the following four:
b12 = b21 = l12 = l21 = 0. Therefore, we have a total of 8 sets of identifying restrictions
multiplied by two assumptions on IST shocks.

[Table 2 is inserted here.]

Table 2 summarizes the results under 8 restriction sets. Entries correspond to the
shares of the consolidated IST shocks and TFP news shocks of FEVDs at horizon 32
quarters. The fractions of consolidated IST shocks and corresponding TFP news shocks
in macro activity movements are listed on the left and the right sides, respectively. Results
of hours worked, output, investment, and consumption are listed in descending order. In
25 out of 32 cases, the results are almost the same as the benchmark scheme. There are
almost no changes in the contributions of surprise TFP shocks and demand shocks.

4 Sources of news

In the previous section, we find that the TFP news shocks turn out to be important in
explaining the Japanese business cycle. However, it might be that news shocks coming
from other sources, such as IST, are also important.8 To consider this, in this section,
we introduce two alternative identification schemes following Beaudry and Lucke (2010).9

Their benchmark identification schemes impose two kinds of restrictions. The first iden-
tification scheme imposes mostly impact restrictions. For example, the news shock is
identified to be orthogonal to TFP and the relative price of investment on impact, but
left unrestricted in the long run. The other identification scheme imposes fewer short-
run restrictions and relies more on long-run restrictions. In both cases, no restriction
is imposed on the effects of news shocks on TFP and IST in the long run. Therefore,
we call the estimated news shocks in this section “consolidated news shocks” because
the estimated news shocks may contain news on both future TFP and future IST. By
comparing the results for consolidated news shocks in this section with those for TFP
news in the previous section, we can quantify the relative importance of TFP and IST
news shocks.10

8Braun and Shioji (2007) examine the role of IST in Japan. Using sign restrictions, they found that
IST is as important as neutral shocks. Fisher (2006) demonstrates the importance of IST in the U.S.
economy, relying on long-run restrictions in the SVAR model. One of his main assumptions is that only
IST shocks affect the real investment price in the long run. Neither paper covers the role of IST news
shocks. Our identification schemes generally include their identification schemes, although the variables
and methods are different.

9They exploit a set of properties that are common to most models embodying such shocks. Following
their identification schemes, we identify four shocks. There are five candidate shocks in their benchmark
system. Their fifth candidate shock is monetary shock which explains around 20 percent of U.S. macroe-
conomic fluctuations. Therefore, we also estimated SVECM with five variables. The data for short-run
nominal interest rates are the collateralized overnight average call rates of the Bank of Japan. However,
its role turns out to be limited in the case of the Japanese economy and we do not include it in the
benchmark case.

10The counterpart of this identification would be to isolate IST news shocks from TFP. This approach
is hard to identify because in many cases the rank condition fails.
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4.1 Beaudry-Lucke ID1 identification scheme

In this subsection, we introduce an alternative identification scheme adopted by Beaudry
and Lucke (2010), replacing assumption A3 with the following impact assumption.

• Assumption B1 (b23 = b24 = 0): News shocks and demand shocks do not have an
impact effect on the relative price of investment.

Assumption B1 is one way to isolate surprise IST shocks from other shocks.1112 As-
sumptions B1, A1, and A2 are sufficient to isolate the four shocks.13 We call this iden-
tification approach with the above assumptions the “Beaudry-Lucke ID1 identification
scheme.” Table 3 summarizes the impact matrix B and the long-run matrix L under this
identification system.

[Table 3 is inserted here.]

4.2 Beaudry-Lucke ID2 identification scheme

Here we replace A3 with the following assumption.

• Assumption B2 (l12 = 0): IST shocks do not have a long-run effect on TFP.

From Assumption B2, TFP is assumed to have an independent process from IST.14

Assumptions A1, A2, and B2 are sufficient to isolate four shocks. We call this iden-
tification approach with the above assumptions the “Beaudry-Lucke ID2 identification
scheme.” Table 4 summarizes the impact matrix B and the long-run matrix L under this
system. Notice that we do not put any restriction on how the two technology shocks
affect each other in the long-run.

[Table 4 is inserted here.]

In our benchmark identification case, we separate TFP shocks into surprise and an-
ticipated parts; hence, news shocks with the stock price innovation include only news on
neutral technology. However, under the Beaudry-Lucke ID1 and ID2 schemes, the third
shock may contain news on both IST and TFP. Therefore, as noted above, we call the
third shocks “consolidated news shocks.”15

11In the IST literature, the TFP process is assumed to be independent of innovations in IST. There-
fore, an additional restriction b21 = 0 purely isolates unanticipated IST shocks, but this becomes an
over-identifying restriction. To guarantee orthogonality of surprise IST shocks to surprise TFP shocks,
additional restriction b12 = 0 is also requested, which is already included in Assumption A1. Robustness
checks are performed with alternative restrictions in the working paper version.

12The assumption b23 = 0 can be criticized because the second variable may not reflect the pure
IST. For example, consolidated news shocks and demand shocks can change the current relative price
of investment goods when adjustment costs exist in investment. Furthermore, when the price stickiness
in investment and consumption sectors is different, other shocks can have a short-run effect on the real
investment price. Therefore, we use an alternative measure in the sensitivity analysis.

13We use only l14 = 0 of Assumption A2 because of the over-identification problem. We have a similar
result with the restriction, l24 = 0.

14To guarantee the independent processes of the two technology changes, we must impose l21 = 0. We
check the robustness later.

15For more details on the identifications, see Beaudry and Lucke (2010).
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4.3 Results under alternative identification schemes

Figs. 5 and 6 depict the IRFs under two alternative identification schemes. IRFs of the
h, y, i, and c systems are shown in the first through fourth rows. To focus on the effects
of the news shock, we plot two technology processes after the stock price innovation in
the first and second columns, and show the IRFs of macro activities to four structural
shocks in the third through sixth columns.

The first and second columns display the IRFs of the measured TFP and the inverse
of the relative price of investment goods to the consolidated news shocks. The shapes of
the measured TFP are similar to and consistent with those observed in the benchmark
system. Furthermore, the inverse of the relative price of investment goods closely follows
the paths of TFP. Therefore, we conclude that the estimated news shocks contain both
types of technology.

In the fifth column, we observe a positive boom of macro activities in the short run
even though there is no initial innovation of technology in the first and second columns.
Again, the only exception is c. We can observe positive responses of macro activities to
the surprise TFP shocks in all cases. The effect of demand shocks is plotted in the sixth
column. We can observe positive responses from the macro activities.

[Figs. 5 and 6 are inserted here.]

Fig. 7 displays the FEVDs of four macro variables in each x system for x ∈ {h, y, i, c}
under the Beaudry-Lucke ID1 identification scheme.16

[Fig. 7 is inserted here.]

The most important finding is that the consolidated news shocks play the most crucial
role in all systems. In all systems, the fractions explained by the third shock increase,
while the contribution of the second shock decreases. The contribution of the consolidated
news shocks is dominant, accounting for more than 50 percent of both hours worked and
investment in all horizons. News shocks also explain a large part of the movements of
output in the long run in particular, and consumption in the short run. The contributions
of surprise TFP shocks and demand shocks seldom change compared to the benchmark
case. Hence, we can conclude that these estimated shocks are almost the same as those
in the benchmark case. Consequently, we conclude that consolidated news shocks dom-
inate the FEVDs of almost all activity measures under the Beaudry-Lucke ID1 and ID2
schemes.

The Beaudry-Lucke identification schemes include news on both future TFP and
future IST, while the benchmark scheme isolates news shocks only on future TFP. From
IRFs and FEVDs, there is almost no difference in the contributions of surprise TFP shocks
and demand shocks between the two identification schemes. Therefore, we conclude
that the differences of IRFs and FEVDs between our benchmark and the Beaudry-Lucke
identification schemes come from the definition of news shocks, and that IST news shocks
as well as TFP news shocks are important factors in explaining the Japanese business
cycle.17

16The result under the Beaudry-Lucke ID2 scheme is almost the same.
17The source of IST news shocks in Japan is another issue. We leave this issue on the future research.
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4.4 Robustness of identification

We only introduce two identification schemes in the former subsection but there are other
possible identifying assumptions. To impose the exogeneity of TFP, we assume b13 =
b14 = l14 = 0. Furthermore, to impose the exogeneity of IST, we set l24 = 0 (Assumption
A3). Alternative assumption would be the impact restriction imposing b24 = 0. Therefore
we have four restrictions, and need two additional restrictions. From the standard macro
models, we can impose following restrictions: b12 = b21 = b23 = l12 = l21 = 0. There
are 10 pairs of restrictions among these assumptions. We have 20 sets of identifying
restrictions due to the existence of two possible assumptions of IST exogeneity.

[Table 5 is inserted here.]

Table 5 summarizes the results of all possible identification schemes based on 20 kinds
of restriction pairs. ID1 and ID2 schemes are also included in these groups. The upper
and lower triangular parts are respectively the results under identifications combining
the short-run and long-run restrictions, b24 = 0 and l24 = 0, and corresponding each row
and column restrictions. Entries indicate the main shock that share the biggest fraction
of macro activities, hours worked, output, investment, and consumption in a descending
order.

Some restriction schemes do not work because of the rank condition, the convergence
problem, or the irrelevant responses. 16 pairs work well in the h system. Among them,
new shocks contribute most in 14 out of 16 cases. Positive responses of hours to surprise
IST shocks are seen in 10 cases. For y, i, and c systems, 10, 11, and 13 pairs are
respectively proper for identification. News shocks contribute most in explaining the
variance of output and investment in all cases, and 12 out of 13 in case of consumption.
Positive responses of macro activities are seen in 8, 6, and 9 cases, respectively. Therefore
in most cases, we can conclude that the consolidated news shocks are the major source
of macroeconomic fluctuations in Japan.18

5 Robustness

In this section, we perform robustness checks of two main results. We mainly perform four
robustness-checks. First, we also replace the stock prices with consumption to identify
news shocks. Second, we check the robustness by sub-sample period estimation. Third,
we re-estimate the model with an alternative measure of IST. Fourth, we perform a
historical decomposition.

5.1 Consumption instead of stock prices

Unlike other variables that exactly describe the structural shocks, news shocks can be
replaced with other forward-looking variables. Following Beaudry and Lucke (2009), we

18We also over-impose some restrictions and check out the results. Under the assumptions A1 and A3,
we set rather strict restrictions on IST shocks: they have neither impact nor long-run effect on TFP. We
set the counter-part restrictions to TFP shocks so that two technology processes become independent
each other. We set b21 = 0 as well as b12 = 0 for no impact effect each other in the first over-identification
scheme, and then set additional restriction l21 = 0 as well as l12 = 0 for no long-run effect in the second
over-identification scheme. In all cases, we find that there are almost no changes in IRs and FEVDs with
additional restrictions, except some responses of IST on TFP.
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use consumption as an alternative variable to identify news shocks.
Fig. 8 displays the FEVDs in y and i systems using consumption as a news shock

variable.19 Two identification schemes are shown: our benchmark scheme on the top
and the Beaudry-Lucke ID1 scheme on the bottom. The contribution of the consolidated
news shocks is the biggest in the Beaudry-Lucke ID1 case, while the consolidated IST
shocks take up large fraction in the benchmark scheme. Under the Beaudry-Lucke ID1
scheme, the contribution of the IST shocks is negligible in all cases, while it takes up 20
to 50 percent of the variances of macro activities in most horizons under the benchmark
scheme. This gap under two different identification schemes restresses the role of the IST
news shocks. We can conclude that the anticipated IST shock explains a large fraction
of the macro activity variances.

[Fig. 8 is inserted here.]

5.2 Subsample periods

We performed a stability test such as break-point chow test and sample-split chow test.
There is a possibility of the structural shift in the middle of the 1970s. Therefore, in this
subsection we re-estimate the model dividing the sample into two subsamples: pre-1975
and post-1975. We could not get the proper IRs under former subsample period so we
only introduce the results of subsample period from the first quarter in 1975.

Fig. 9 shows FEVDs of macro activities and reveals that the consolidated news shocks
are the major source of all macro activities in the subsample period. However, most of
them are attributed to the IST news shocks in h and y systems under this subsample
period. Contributions of demand shocks become larger compared to the benchmark case,
but their role is still minor.

[Fig. 9 is inserted here.]

5.3 Quality adjusted measures

There are some IR results that are inconsistent with theory. For example, the signs of IRs
of consumption to news shocks are negative in the short run, which is inconsistent with
theory. One possible reason is that our inverse of the relative price of investment goods is
not a perfect measure of IST. To address the mis-measurement issue of the relative price
of investment goods, we use an alternative measure. Fisher (2006) uses quality adjusted
measures of prices published in the “National income and product” of the U.S. Bureau
of Economic Analysis. Bank of Japan offers the Corporate Goods Price Index (CGPI)
for quality-adjusted investment. Therefore, we alternatively measure the inverse of the
relative price of investment as the consumption deflator divided by the CGPI deflator for
quality-adjusted investment.

Figs. 10 and 11 present IRs to each shock with alternative measure of the investment
price. The results show that consumption increases in response to the TFP news shocks
in both identification schemes.20

19We do not display the result under the h system because we fail to replicate the proper IRs.
20We do not get the proper IRs under i system under the Beaudry-Lucke identification scheme. Thus,

we only show three other cases.
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[Figs. 10 and 11 are inserted here]

Fig. 12 reports the corresponding FEVDs. The results under the benchmark scheme
suggest that the contributions of TFP news shocks to hours worked and output are
limited. However, the fractions explained by TFP news shocks become increased in the
case of investment and consumption. In addition, the results under Beaudry-Lucke ID1
scheme reveal another evidence that the IST news is important.

[Fig. 12 is inserted here]

6 Sign-restriction approach

There are several differences between our SVECM and the DSGE model estimation.
Most importantly, our SVECM approach imposes only minimum assumptions, while
a structural estimation with a fully specified DSGE model should impose many more
assumptions. Although the DSGE approach has an advantage of being straightforward
to interpret shocks, it faces the risk of imposing too much structure on the model which
might not necessarily capture the true structure of the actual economy. The SVAR
approach (including our SVECM), on the other hand, has one problem which is that it
sometimes produces impulse responses that are not consistent with theory. Therefore, to
understand the limitations of both approaches, it may be desirable to compare the results
produced by them. In this section, we first compare our SVECM results with the DSGE-
approach results reported in Fujiwara, Hirose, and Shintani (2011), next we discuss some
limitations of our SVECM above, and finally we introduce a new SVAR approach which
has several advantages over the SVECM approach and also makes it more suitable to
compare with the DSGE approach.

6.1 Comparison with Fujiwara, Hirose, and Shintani (2011)

Fujiwara et al. (2011) assess the relative importance of the TFP news shocks based on
an estimation of a DSGE model using a Bayesian method. They build a New Keynesian
DSGE model a la Christiano, Eichenbaum, and Evans (2005) and explicitly introduce
TFP news shocks.21 Table 6 reports the share of macroeconomic fluctuations explained
by TFP news shocks in our SVECM and Fujiwara et al. (2011).

[Table 6 is inserted here.]

The main difference between the results is that news shocks are the main contributor
in our SVECM while surprise TFP shocks are the dominant driver in their model. Why
does this difference occur? There are several possible reasons. First, the estimated news
shocks in our SVECM model are different from those in Fujiwara et al. (2011). Our
estimated news shocks start to increase TFP around four to 32 periods after the stock
market innovation, while news shocks in Fujiwara et al. (2011), like other DSGE works,
are built to start to increase future TFP from one to four periods ahead. Second, the
treatment of the trend may be another explanation. In our SVECM, we assume a common

21Sugo and Ueda (2008) perform a Bayesian estimation of the Japanese economy, introducing several
kinds of candidate shocks. They conclude that investment shocks played an important role in the 1990s.
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stochastic trend based on the ADF tests and the Johansen cointegration tests, while they
examine the model around the deterministic trend. Third, they only introduce TFP news
shocks, and do not consider other types of news shocks. The estimated TFP news shocks
in our SVECM play a non-negligible role in the benchmark case. In the Beaudry-Lucke
identification scheme, the contribution of the news shocks increases because the news
shocks also include news on IST.

6.2 Some limitations of our SVECM

Our SVECM used above has some limitations. First, the timing of news shocks changes in
each macro activity system, which makes it difficult to compare with the DSGE approach.
For example, news shocks in the c system start to increase TFP three quarters after the
stock market innovation, while in the y system it takes 32 quarters for news shocks to
increase TFP. Second, in our SVECM it is difficult to include at the same time all the
relevant variables in the VAR and we must use VAR models with only four variables
and thus must substitute out a macro activity variable and replace it with another in
each system. This is because in our SVECM a combination of short-run and long-run
restrictions is required, and including more variables requires including more shocks and
thus makes it harder to justify and set the restrictions to identify all shocks. Third, the
number of shocks may influence the results as it is argued that with more shocks the
contribution of TFP shocks might not as large as reported in Beaudry and Portier (2006)
who employ a VAR with only two variables and two shocks. In our SVECM the number
of shocks is four which is smaller than that in Fujiwara et al. (2011) who introduce many
more types of shocks.

6.3 The sign restriction approach: Estimation and results

Considering the problems discussed above, here we adopt the SVAR approach with sign
restrictions. As noted in Uhlig (2005), this approach allows us to identify only a subset
of the structural shocks, thus it enables us to include more variables in the VAR. Below
we estimate a seven-variable VAR, and we identify only two shocks, namely surprise TFP
shocks and TFP news shocks, because these shocks are the major focus of our paper. The
sign restriction approach also allows us to estimate the VAR in level because it does not
require a long run restriction, thus we do not need to assume a common stochastic trend
in the data and we can avoid the above problem regarding the difference in the treatment
of trends in our paper and Fujiwara et al. (2011). As shown in the IRFs below, with the
sign restriction approach we are also able to control for the timing of news. The order of
the endogenous variables in the VAR is as follows: tfp, pi, sp, h, y, i, and c. We impose
the following sign restrictions on the IRFs to identify surprise TFP shocks and TFP news
shocks. Surprise TFP shocks are identified by the restrictions that they raise TFP and
stock prices at the impact. TFP news shocks are identified by the restrictions that they
have zero effect on TFP and raise stock prices and macro activities at the impact, and
they raise TFP within four quarters later. Note that the first restriction distinguishes a
TFP news shock with a surprise TFP shock. We do not impose any restriction on the
response of the inverse of the relative price of investment goods.

Following Uhlig (2005) and Vu (2009), we start by estimating a reduced-form VAR. We
include a constant term and assume two lags based on the AIC. The relationship between
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the residual obtained in the estimated reduced-form VAR and the structural shocks is εt

and ut = Bεt, with E[utu
′
t] = Σ and E[εtε

′
t] = I. The impact matrix B can be written

in the form B = PQ, where P is the lower triangular Cholesky factor of Σ, and Q is an
orthonormal matrix with QQ′ = I. We generate from the Wishart-Normal distributions
a number of draws of the VAR coefficients and the variance-covariance matrix of the
residuals. For each of these draws, we generate a number of the first two columns of the
matrix Q and keep the ones (we called them valid draws) which produce IRFs to the two
TFP shocks that satisfy the restrictions noted above while discard those that do not. We
continue this task until we obtain 100 valid draws.22

Fig. 13 shows the IRFs to the TFP news shocks. The identified TFP news shocks
are the same as our SVECM approach except for the timing of the increase in TFP.
Although in our sign restriction scheme we leave the possibility that TFP may start to
increase at two to four periods after the boom in the stock market and macro activities,
it turns out in the results that estimated news shocks increase TFP only one period after
the stock market boom. Among macro activities, investment shows the largest response
to the news shocks. Our estimated news shocks seem to have no long-run effect on the
inverse of the relative price of investment goods as shown in the second panel.

[Fig. 13 is inserted here]

Fig. 14 displays the FEVDs. We can see that the contribution of news shocks de-
creases compared to the four-variable SVECM. One of the reasons might be that the
number of structural shocks increases. The inclusion of many candidate shocks into the
model may decrease the contribution of each shock, as noted above. We also observe that
the contribution of news shocks is larger as compared to Fujiwara et al. (2011), while the
contribution of surprise TFP shocks becomes minor. This finding is noteworthy because
we imposed few restrictions to identify surprise TFP shocks compared to the SVECM
case above.

[Fig. 14 is inserted here]

6.4 The sign restriction approach: Applying to the case of the
U.S.

Fujiwara et al. (2011) find that the contribution of news shocks in the U.S. economy is
larger than in the Japanese economy. In this subsection we estimate the same SVAR with
sign restrictions as noted above using U.S. data and compare the results with those for
Japan. The data for the U.S. economy are taken from Beaudry and Lucke (2009).23 We
set the sample period to be 1960-Q1 to 2002-Q4, the same of that for the case of Japan
for the purpose of comparison. The main results are shown in Figs. 15 and 16. IRFs
are almost the same as those in the case of Japan. One noteworthy finding regarding
FEVDs is that the contribution of news shocks in the U.S. economy increases compared
to Japan’s results. This finding is consistent with Fujiwara et al. (2011).

[Figs. 15 and 16 are inserted here]

22For more details of each estimation step, see Vu (2009).
23For the details of the data, see Beaudry and Lucke (2010).
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7 Conclusion

What is the driving source of Japanese business cycle fluctuations? We answer this
fundamental question using a SVECM approach with the combination of long-run and
short-run restrictions. We assess the relative importance of possible candidate shocks
with all possible identification schemes that are consistent with standard macro models.

Our main findings are as follows. First, the estimated TFP news shocks are impor-
tant in explaining the variances of hours worked and investment, but play a somewhat
smaller role in the cases of consumption and output. Therefore, our benchmark result
lies between previous studies. Second, IST news shocks turn out to be the dark horse
behind the Japanese business cycles. Therefore, the news shocks on both of future TFP
and IST are capable of explaining most fluctuations in macro activities. Furthermore, the
evidence also suggests that large portions of the bubble economy in the late 1980s and
the stagnation in the early 1990s can be explained by news shocks. The surprise TFP
shocks play some role in explaining output and consumption movement, but a negligible
role in explaining hours worked and investment movement.

As an alternative approach, we estimate a SVAR model with sign restrictions. Using
a SVAR model with sign restrictions, we identify more specified news shocks consistent
with the previous DSGE literature. We find that news shocks explain around 10 to 30
percent of macroeconomic fluctuations under this approach. This finding lies between
our SVECM and Fujiwara et al. (2011).

We also compare our results with those for the U.S. economy. The major differences
between the business cycles of Japan and the U.S. are as follows. First, in the Japanese
economy, we find the significant contribution of IST news shocks in the benchmark case;
this was negligible in the U.S. business cycles in Beaudry and Lucke (2010). Second, the
results of SVAR estimation with sign restrictions indicate that the contribution of news
shocks is larger in the U.S. economy.

In the future research, more specific identifications of all structural shocks based on
SVAR with sign restrictions are possible. We only identify news shocks that replicate the
TFP and IST processes observed in theory. We can apply the method to identify several
kinds of news shocks and investigate the relationship between macro activities. It may
be also possible to explore other types of news shocks such as the announcement effect
of monetary and fiscal policies.
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Table 1
Impact and long-run matrices B and L under the benchmark scheme

B =

surprise consolidated TFP demand
TFP IST news shock

tfp ∗ 0 0 0
pi ∗ ∗ ∗ ∗
sp ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗

L =

surprise consolidated TFP demand
TFP IST news shock

tfp ∗ ∗ ∗ 0
pi ∗ ∗ 0 0
sp ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗

Note: tfp, pi, sp, and x respectively denote TFP, the relative price of investment goods,
stock prices, and macro activity. Macro activity, x, includes h, y, i, and c, which denote
hours worked, output, investment, and consumption, respectively. Dependent variables
are listed in rows and structural shocks are listed in columns. Starred entries mean that
the corresponding elements are not restricted. Zero entries indicate that the correspond-
ing shocks do have no effect on the corresponding variables.

Table 2
Robustness of identifying restrictions

b12 = 0 b21 = 0 l12 = 0 l21 = 0
b24 = 0 0.36, 0.59 0.36, 0.59 0.03, 0.59 0.36, 0.59

0.48, 0.20 0.48, 0.20 0.42, 0.19 0.21, 0.20
0.42, 0.41 0.47, 0.41 0.01, 0.41 0.52, 0.41
0.11, 0.06 0.09, 0.06 0.30, 0.06 0.17, 0.06

l24 = 0 0.36, 0.59 0.36, 0.59 0.03, 0.59 0.36, 0.59
0.44, 0.27 0.44, 0.27 0.28, 0.27 0.19, 0.27
0.39, 0.48 0.44, 0.48 0.01, 0.48 0.49, 0.48
0.10, 0.06 0.09, 0.06 0.29, 0.06 0.17, 0.06

Note: The upper (lower) row is the result under identifications combining the short-run
(long-run) restriction b24 = 0 (l24 = 0) and corresponding each column restrcitions. The
left entries below indicate the value of consolidated IST shocks at horizon 32 quarters. The
right values are the corresponding TFP news shock share of variances. Their contributions
for macro activities such as hours worked, output, investment, and consumption are listed
in a descending order.
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Table 3
Impact and long-run matrices B and L under the Beaudry-Lucke ID1 scheme

B =

surprise surprise consolidated demand
TFP IST news shock

tfp ∗ 0 0 0
pi ∗ ∗ 0 0
sp ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗

L =

surprise surprise consolidated demand
TFP IST news shock

tfp ∗ ∗ ∗ 0
pi ∗ ∗ ∗ ∗
sp ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗

Note: The benchmark system is based on four variables: tfp, pi, sp, and x, respectively
denote TFP, the relative price of investment goods, stock prices, and macro activity.
Macro activity, x, includes h, y, i, and c, which denote hours worked, output, investment,
and consumption, respectively. Dependent variables are listed in rows and structural
shocks are listed in columns. Starred entries mean that the corresponding elements are
not restricted. Zero entries indicate that the corresponding shocks do have no effect on
the corresponding variables.

Table 4
Impact and long-run matrices B and L under the Beaudry-Lucke ID2 scheme

B =

surprise surprise consolidated demand
TFP IST news shock

tfp ∗ 0 0 0
pi ∗ ∗ ∗ ∗
sp ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗

L =

surprise surprise consolidated demand
TFP IST news shock

tfp ∗ 0 ∗ 0
pi ∗ ∗ ∗ 0
sp ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗

Note: The benchmark system is based on four variables: tfp, pi, sp, and x, respectively
denote TFP, the relative price of investment goods, stock prices, and macro activity.
Macro activity, x, includes h, y, i, and c, which denote hours worked, output, investment,
and consumption, respectively. Dependent variables are listed in rows and structural
shocks are listed in columns. Starred entries mean that the corresponding elements are
not restricted. Zero entries indicate that the corresponding shocks do have no effect on
the corresponding variables.
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Table 5
Robustness of identifying restrictions

b12 = 0 b21 = 0 b23 = 0 l12 = 0 l21 = 0
b12 = 0 n.i. news (+) news (−) n.i.

n.i. news (+) news (−) n.i.
n.i. news (+) news (−) n.i.
n.i. news (+) news (−) n.i.

b21 = 0 n.i. news (+) tfp (−) news (+)
n.i. news (+) n.i. n.i.
n.i. news (+) news (−) n.i.
n.i. news (+) news (−) tfp (+)

b23 = 0 news (+) news (+) news (+) news (+)
news (+) news (+) news (+) news (+)
news (+) news (+) news (−) news (+)
news (+) news (+) news (+) news (+)

l12 = 0 news (−) tfp (−) news (+) news (−)
news (−) n.i. news (+) n.i.
news (−) n.i. news (−) n.i.
news (−) news (−) news (+) n.i.

l21 = 0 n.i. news (+) news (+) news (−)
n.i. n.i. news (+) n.i.
n.i. n.i. news (+) n.i.
n.i. tfp (+) news (+) n.i.

Note: The upper (lower) triangular part is the result under identifications combining the
short-run (long-run) restriction b24 = 0 (l24 = 0) and corresponding each row and column
restrcitions. Entries indicate the main shock that share the the biggest fraction of macro
activities, hours worked, output, investment, and consumption in a descending order.
The sign in each bracket indicates the direction of macro activity responses to surprise
IST shocks. n.i. means not identified.
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Table 6
Estimated contribution of news shocks

h y i c
SVECM

Benchmark 0.59 0.27 0.48 0.06
Beaudry-Lucke ID1 0.90 0.52 0.60 0.14

SVECM (quality adjusted)
Benchmark 0.07 0.03 0.69 0.23

Beaudry-Lucke ID1 0.18 0.61 n.i. 0.38
Estimated DSGE model
Fujiwara et al. (2011) 0.02 0.07 0.01 0.05

Note: The entries below SVECM indicate the value of news shock contribution at horizon
32 quarters. The entries reported in the rows below the one entitled ‘Estimated DSGE
model’ correspond to the share of the FEVDs of Table 4 in Fujiwara et al. (2011). n.i.
means not identified.
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Fig. 1. IRs of the h system under the benchmark identification scheme. Impulses are given in columns,
responding variables in rows. Solid lines represent estimated impulse responses to each shock, and dashed
lines are two standard errors bootstrapped confidence intervals (Hall).
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Fig. 2. IRs under y, i, and c systems under the benchmark identification scheme. Impulses are given in
columns, responding variables in rows. Solid lines represent estimated impulse responses to each shock,
and dashed lines are two standard errors bootstrapped confidence intervals (Hall).
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top to bottom demand shock TFP news shock
consolidated IST shock surprise TFP shock

Fig. 3. FEVDs under the benchmark identification scheme. FEVDs of h and y (i and c) are listed from
the left to the right panel in the first (second) row.
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Fig. 4. Historical variance decompositions of structural shocks in 1980-2002. FEVDs of h and y are
listed from the left to the right panel in the first row. FEVDs of i and c are listed from the left to the
right panel in the bottom row.
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Fig. 5. IRs of the h, y, i, and c systems under the Beaudry-Lucke ID1 identification scheme. Impulses
are given in columns, responding variables in rows. Solid lines represent estimated impulse responses to
each shock, and dashed lines are two standard errors bootstrapped confidence intervals (Hall).

Fig. 6. IRs of the h, y, i, and c systems under the Beaudry-Lucke ID2 identification scheme. Impulses
are given in columns, responding variables in rows. Solid lines represent estimated impulse responses to
each shock, and dashed lines are two standard errors bootstrapped confidence intervals (Hall).

27



top to bottom demand shock consolidated news shock
surprise IST shock surprise TFP shock

Fig. 7. FEVDs under the Beaudry-Lucke ID1 identification scheme. FEVDs of h and y (i and c) are
listed from the left to the right panel in the first (second) row.
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top to bottom demand shock consolidated news shock
surprise IST shock surprise TFP shock

Fig. 8. FEVDs in the y and i systems, with consumption as a news shock variable. FEVDs of y and
i under the benchmark (the Beaudry-Lucke ID1) identification scheme are listed from the left (right)
column.
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top to bottom demand shock consolidated news shock
surprise IST shock surprise TFP shock

Fig. 9. FEVDs under subsample periods from 1975-Q1 to 2002-Q4. FEVDs of h, y, and i under the
benchmark (Beaudry-Lucke ID1) identification scheme are respectively listed from the left to the right
panel in the left (right) column.
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Fig. 10. IRs with quality-adjusted data under the benchmark identification scheme. Impulses are
given in columns, responding variables in rows. Solid lines represent estimated impulse responses to each
shock, and dashed lines are two standard errors bootstrapped confidence intervals (Hall).

Fig. 11. IRs with quality-adjusted data under the Beaudry-Lucke ID1 identification scheme. Impulses
are given in columns, responding variables in rows. Solid lines represent estimated impulse responses to
each shock, and dashed lines are two standard errors bootstrapped confidence intervals (Hall).
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top to bottom demand shock consolidated news shock
surprise IST shock surprise TFP shock

Fig. 12. FEVDs with quality-adjusted data under the benchmark and Beaudry-Lucke ID1 identification
schemes. FEVDs under the bencmark (Beaudry-Lucke ID1) scheme are listed in the left (right) column.
FEVD of i under Beaudry-Lucke ID1 scheme is not listed because of the identification failure.
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Fig. 13. IRs of seven-variable case to news shocks. The shaded areas indicate the impulses directly
restricted by the identification procedure. Dotted lines indicates 5th and 95th percentiles. Thick lines

are the medians of all the valid draws.

surprise TFP shock news shock other shocks

Fig. 14. FEVDs based on the VAR under sign restrictions. FEVDs of tfp, pi, sp, h, y, i, and c are
listed in orders.
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Fig. 15. IRs of seven-variable case to news shocks (U.S. case). The shaded areas indicate the impulses
directly restricted by the identification procedure. Dotted lines indicates 5th and 95th percentiles.

Thick lines are the medians of all the valid draws.

surprise TFP shock news shock other shocks

Fig. 16. FEVDs based on the VAR under sign restrictions (U.S. case). FEVDs of tfp, pi, sp, h, y, i,
and c are listed in orders.
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