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Abstract

Is the cross-sectional distribution of house prices close to a (log)normal distribution, as
is often assumed in empirical studies on house price indexes? How does it evolve over time?
How does it look like during the period of housing bubbles? To address these questions,
we investigate the cross-secional distribution of house prices in the Greater Tokyo Area.
Using a unique dataset containing individual listings in a widely circulated real estate
advertisement magazine in 1986 to 2009, we find the following. First, the house price, Pit,
is characterized by a distribution with much fatter tails than a lognormal distribution,
and the tail part is quite close to that of a power-law or a Pareto distribution. Second,
the size of a house, Si, follows an exponential distribution. These two findings about
the distributions of Pit and Si imply that the the price distribution conditional on the
house size, i.e., Pr(Pit | Si), follows a lognormal distribution. We confirm this by showing
that size adjusted prices indeed follow a lognormal distribution, except for periods of the
housing bubble in Tokyo when the price distribution remains asymmetric and skewed to
the right even after controlling for the size effect.

JEL Classification Number : R10; C16
Keywords: house prices; house price indexes; power-law distributions; fat tails; hedonic
regression; the size dependence of house prices; housing bubbles

1 Introduction

Researches on house prices typically start by producing a time series of the mean of prices
across housing units in a particular region by, for example, running a hedonic regression or by
adopting a repeat-sales method. In this paper, we propose an alternative research strategy: we
look at the entire distribution of house prices across housing units in a particular region at a
particular point of time, and then investigate the evolution of such cross sectional distributions
over time. We seek to describe price dynamics in a housing market not merely by changes in the
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Figure 1: The percentiles of the cross-sectional house price distribution for each month

mean but by changes in some key parameters that fully characterize the entire cross sectional
price distribution. Our ultimate goal is to produce a new housing price index based on these
key parameters.

Specific questions we have in mind is whether the house price distribution is close to a Gaus-
sian distribution or something else; whether it has fatter-tails than a Gaussian distribution;
how the distribution is affected by various attributes of a house, including its size, location,
and age; how the shape of the distribution changes over time, especially during the period of
bubble and its bursting.

The rest of the paper is organized as follows. Section 2 provides a description of the dataset
we will use in this paper. The distributions of house prices and those of house sizes are inves-
tigated in sections 3 and 4, respectively. In section 5 we will estimate a size adjusted price for
each housing units, and see whether the distribution of the size adjusted prices is close to a
normal distribution. Section 6 provides a tentative conclusion.

2 Data

In conducting this empirical exercise, we use a unique dataset that we have compiled from
individual listings in a widely circulated real estate advertisement magazine, which is published
by Recruit Co., Ltd., one of the largest vendors of residential lettings information in Japan.
The dataset covers the Tokyo metropolitan area for the period 1986 to 2009, including the
bubble period in the late 1980s and its collapse in the early 90s. It contains 724,416 listings for
condominiums and 1,602,918 listings for single family houses. This dataset is used by a series
of papers including Shimizu et al (2009) which compares hedonic and repeat-sales measures
from various viewpoints. In this paper we will use data only for condominiums.
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Figure 2: PDFs and CDFs of the house price distribution by year

3 House price distributions

As a first step to look at the data, we show in Fig 1 the monthly evolution of the percentiles of
the cross-sectional house price distribution. For example, the 10th percentile, which is shown by
the red line, indicates the price level above which 10 percent of the observations may be found.
As shown by the 50th percentile (or the median) line, house prices rose rapidly in the latter
half of the 1980s and declined in the first half of the 1990s. This swing in prices corresponds to
housing bubble and its bursting in Tokyo. We see that the distance between the 90th percentile
and the 50th percentile is much smaller than the one between the 10th percentile and the
50th percentile, implying that the distribution is not symmetric. This asymmetry seems to be
particularly significant during the bubble period (i.e., the latter half of the 1980s).

To examine more closely the shape of the price distribution, we show in Fig 2 the probability
density function (PDF) and the cumulative distribution function (CDF) for each year. Prices
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of housing units in each year are normalized using the mean and the standard deviation in that
year.1 Note that the CDFs are constructed by summing up the densities above (not below) a
particular price level in order to examine closely the right tail (i.e., larger price level) of each
distribution. From this figure, we see that the PDFs have much fatter tails than a lognormal
distribution, whose PDF and CDF are shown by the solid lines. For example, the fraction of
housing units whose prices deviate from the mean by more than 3σ is about 1.71 percent in
2005 while the corresponding figure for a normal distribution is 0.26 percent. More importantly,
the deviation from a lognormal distribution tends to be larger in the latter half of the 1980s and
the early 1990s; specifically, the PDFs in these years are substantially skewed to the right. This
implies that, even during the bubble period, house prices did not rise by an equal percentage
for every housing unit, but relative prices among houses changed significantly during those
years.

The CDFs in this figure provide much more detailed information regarding how much the
price distributions deviate from a lognormal distribution. Specifically, we see that the CDF in
each year forms a straight line in this log-log graph, implying that the house price distribution
is close to a power-law distribution (or a Pareto distribution) whose PDF and CDF are given
by

Pr(Pit = p) =
ζtm

ζt

t

pζt+1
; Pr(Pit ≥ p) =

(
mt

p

)ζt

; p > mt > 0 (1)

where Pit represents the price of a housing unit i in period t, and ζt and mt are time-variant
positive parameters. The CDF given in (1) implies that

ln Pr(Pit ≥ p) = −ζt ln p + ζt ln mt

In words, the log of the cumulative probability should be linearly related to the log of the price,
which is actually observed in Fig 2. The slope of a linear line, i.e. the value of ζt, is almost
identical across different years and it is about three.2

As a goodness-of-fit test, we conduct a test proposed by Malevergne et al. (2009). Specif-
ically, we test the null hypothesis that the house price distribution in each year follows a
power-law distribution against the alternative hypothesis that it follows a log normal distri-
bution. We find that the null cannot be rejected for each of the 24 distributions (namely, the
distributions from 1986 to 2009) at the five percent significance level.
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Figure 3: CDFs of the size of a house

4 House size distributions

Previous studies on wealth (or income) distributions across households typically find that those
distributions are characterized by fat tails, and that they follow a power-law distribution.3

Given that a house is an important part of wealth for each household, it may not be so
surprising to detect a similar feature in the house price distribution. But why and how (through
what mechanism) do house prices follow a power-law distribution? To address this question,
we decompose the house price distribution as follows:

Pr(Pit = p) =
∑

s

Pr(Pit = p | Si = s) Pr(Si = s) (2)

where Si represents the size of a housing unit i. The term Pr(Si = s) represents the distribution
of the size of a house, and the term

∑
Pr(Pit = p | Si = s) represents the distribution of the

price of a house conditional on its size.
Figure 3 shows the CDFs of the size of a house, measured by square meters, for each year,

with the size of a house on the horizontal axis and the log of CDF on the vertical axis. We see
that the CDF in each year forms a straight line in this semi-log graph, implying that the size
distribution follows an exponential distribution whose PDF and CDF are given by

Pr(Si = s) = λt exp (−λts) ; Pr(Si ≥ s) = exp (−λts) ; λt > 0 (3)

where λt is a time-variant positive parameter. Note that the CDF shown above implies that

lnPr(Si ≥ s) = −λts

1Specifically, we define normalized prices as exp[(ln Pit − µt)/σt], where µt and σt are the mean and the
standard deviation in year t.

2Note that normalized prices are equal to [exp(−µt)Pit]
1/σt , so that the slope of each CDF in Fig 2 represents

σtζt rather than ζt. We estimated the value of ζ using the CDFs for the original prices, which are not shown
here due to the space limitation.

3See Pareto (1896). Gabaix (2009) provides an extensive survey of empirical studies on power laws in various
aspects of economic activities, including income and wealth, the size of cities and firms, stock market returns,
and so on.
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Figure 4: Relationship between the size of a house and its price

so that the log of the CDF depends linearly on the size of a house. The slope of the CDF line,
namely the value of λ, is something around 0.04 in each year. The fact that the house size
follows an exponential distribution implies that the tails of the size distribution are less fat
than the ones of the price distribution; for example, the fraction of housing units whose size
deviate from the mean by more than 3σ is only 1.17 percent in 2005, which is smaller than
the corresponding figure for the price distribution (1.71 percent) although it is still far greater
than the corresponding figure for a normal distribution (0.26 percent).4

5 Size-adjusted prices

An important implication of eqns (1) and (3) is that the house price conditional on its size,
i.e., Pit | Si = s in eq (2), follows a lognormal distribution. Specifically, a size-adjusted price
P̃it, which is defined as

P̃it ≡
Pit

exp (atSi + bt)
(4)

where

at ≡
λt

ζt
; bt ≡ lnmt (5)

4One may wonder why the house size obeys the exponential distribution. To address this, we set up a simple
optimization problem in which one allocates space to each house so as to maximize the variety of house sizes
subject to the space constraint (i.e. only limited space is available to be allocated to houses), and show that a
solution to this problem is indeed characterized by an exponential distribution.
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Figure 5: Price-size regressions

follows a lognormal distribution with the mean being unity.5

To test this implication, we first examine for a linear relationship between the log of the
price of a house and its size. The upper panels of Fig 4, with the house size on the horizontal
axis and the median of the log price corresponding to that size on the vertical axis, clearly
indicate the presence of such a linear relationship between the two variables. Furthermore, the
fact that the size adjusted price defined by eqn (2) follows a lognormal distribution implies that
the per unit area price, P/S = exp(aS + b)/S, decreases with S when S is small and increases
with S when S is sufficiently large, so that there should exist a U-shaped relationship between
the per unit area price and the house size. The lower panels of Fig 4, in which the vertical axis
now represents P/S, confirms this prediction.

To give an intuitive understanding of what is going on here, think about a simple example
in which the household A has 100 times as much wealth as the household B does, so that the
household A spends money for a house 100 times as much as B does. Note that the existence
of such a huge difference in wealth and the house price across households is not so rare, given
that both wealth and the house price are characterized by distributions with power-law tails.
Given this, one may wonder how the A’s house looks like. Does it have a bathroom that is 100
times larger than the one in the B’s house? Alternatively, does it have 100 bathrooms? Needless
to say, neither is true; because such a giant bathroom (or so many bathrooms) is nothing but
uncomfortable even to millionaire like A. Instead, the size of the A’s house (and therefore the
size of its bathroom) is probably no more than 10 times, as implied by the fact that the house
size follows a distribution with much less fat tails compared to the house price. To fill the gap,
the unit area price for the A’s house must be 10 times higher.

We now proceed to estimating at and bt in eq (4) by running a regression of the form

lnPit = atSi + bt + ϵit (6)

5The price-size relationship described by eqn (4) provides an answer to the question regarding the choice of
functional form for hedonic price equations, which has been extensively discussed by previous studies, such as
Cropper et al (1988), Diewert (2003), and Triplett (2004). The novelty of our approach is that we derive this
functional form not from economic theories but from the statistical fact that the price and the size of a house
obeys a power-law distribution and an exponential distribution, respectively.
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where ϵit is a disturbance term obeying a normal distribution with the zero mean. The result is
presented in Fig 5. The estimate of at in each year is around 0.015, implying that an increase in
the house size by a square meter leads to a 1.5 percent increase in the house price. We see that
the estimates of at are almost identical across years in the sense that the changes in at across
years are within the confidence intervals. More importantly, the estimate of a is sufficiently
close to the value implied by eqn (5). That is, the slope of the CDF line in the house price
in Fig 2 (i.e., the value of ζ) is around 3, and the slope of the CDF line in the house size in
Fig 3 (i.e., the value of λ) is equal to 0.04, so that λ/ζ ≈ 0.013. This number is quite close to
the point estimate of a in each year, and is within the confidence intervals.6 Turning to the
estimate of bt, it exhibits substantial fluctuations: it increased by more than 20 percent per
year from 1986 to 1990, and it declined by 10 percent per year from 1990 to 2002.

Finally, we construct the size adjusted prices P̃it by using the estimates of a and b in order
to see whether it does indeed follow a lognormal distribution. Specifically, we assume that at

is identical across years and that it equals the sample average (â = 0.0125). Based on this,
we calculate Pit/ exp(âSi), whose CDFs are shown on the right hand side of Fig 6. The price
distributions without size adjustments (the same figures as in Fig 2) are shown on the left hand
side. Comparing these two sets of CDFs, we see that the CDFs for the size adjusted prices
are much closer to the CDF of a lognormal distribution, which is shown by the black solid
line. Specifically, we see that the CDFs for 2002 to 2009, which are shown on the bottom right
panel, are almost identical to the CDF of a lognormal distribution. The same thing applies to
the CDFs for 1995 to 2001, which are shown on the middle right panel. However, the CDFs
for 1986 to 1994, which are presented on the top right panel, are still far from the CDF of
a lognormal distribution, although they are somewhat closer to it as compared to the CDFs
of the non-adjusted prices. To measure the distance between the distribution of the adjusted
price and a lognormal distribution in a more formal way, we present in Fig 7 quantile-quantile
plots of the log of the size-adjusted price against a normal distribution. We see that the dots
are on the 45 degree line for the latter half of the sample period (i.e. 1997-2009), indicating
that the two distributions are sufficiently close to each other. However, for the former half of
the sample period (1986-1996), the dots deviate considerably from the 45 degree line, which
clearly rejects the null that the two distributions are identical.

In sum, the results presented in figures 6 and 7 indicate that size adjusted prices follow a
lognormal distribution for the quiet periods without extremely large fluctuations in prices. On
the other hand, for the periods with extremely large price fluctuations, such as those caused
by housing bubbles, the fat tails of price distribution remain largely unchanged even after
controlling for the size effect. An implication of these two different results is that we may be
able to use the distance of the size adjusted price distribution from a lognormal distribution
as a measure of deviations from fundamental price levels. That is, we may be able to say that

6Note that the per unit area price, exp(aS + b)/S takes a minimum value when S is equal to 1/a. Given the
estimate of a (a = 0.013), this implies that the per unit area price takes a minimum value when S = 1/0.013 ≈
75, which is consistent with what we see in the lower two panels in Fig 4.
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Figure 6: CDFs of the size adjusted house price distribution

prices are sufficiently close to fundamental levels when size adjusted prices follow a lognormal
distribution. On the other hand, when the distance between the distribution of size adjusted
prices and that of a lognormal distribution is not trivial, then we may be able to say that
prices deviate from fundamental values, and in that sense there exist price bubbles. Of course,
we need to conduct further investigations before interpreting the results in figures 6 and 7
in this manner.7 However, aggregate measures of housing prices, either estimated by hedonic
regressions or repeat-sales methods, typically focus on the mean of the price distribution,
thereby discarding other information on the distribution, including its variance, skewness, and
so on. It would be quite difficult (or maybe impossible) to discriminate between price bubbles

7Specifically, we may identify housing units that are located in the thick tail of the distribution in Fig 6.
These housing units are outliers in the sense that they are unlikely to be observed if the distribution is close
to a lognormal. We may be able to investigate whether these housing units are affected by price bubbles by
looking at, for example, whether they are located in a particular area with high turnover. This is the task we
are currently working on.

9



0.01
0.1

1
5

20

50

80

95
99

99.9
99.99

-4 -2  0  2  4

C
um

ul
at

iv
e 

P
er

ce
nt

normalized  log(P) – ( a S + b )

Normal Probability Plot

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996

Log-normal
0.01
0.1

1
5

20

50

80

95
99

99.9
99.99

-4 -2  0  2  4

C
um

ul
at

iv
e 

P
er

ce
nt

normalized  log(P) – ( a S + b )

Normal Probability Plot

1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Log-normal

Figure 7: Quantile-quantile plots of the size-adjusted house price distribution against a normal
distribution

and changes in fundamental values, if one sticks to these aggregate measures. In this sense our
results may suggest the possibility of detecting price bubbles by making full use of information
on the entire price distribution.

6 Tentative conclusion

The main findings of this paper can be summarized as follows. First, we have found that
the house price for the housing unit i in year t, Pit, is characterized by a distribution with
much fatter tails than a lognormal distribution, and the tail part is quite close to that of a
power-law or a Pareto distribution. Second, we have found that the size of a house, Si, follows
an exponential distribution. An important implication of these two findings is that the price
distribution conditional on the house size, i.e., Pr(Pit | Si), is characterized by a lognormal
distribution. We confirm this implication by showing that size adjusted prices indeed follow
a lognormal distribution, except for periods of the housing bubble in Tokyo when the price
distribution remains asymmetric and skewed to the right even after controlling for the size
effect.

The fact that size-adjusted prices in each year follow a lognormal distribution implies that
one can characterize the evolution of the house price distribution only by two parameters:
namely, the mean and the variance of the lognormal distribution in each year. This suggests a
new approach to constructing a housing price index. This is similar to the well know approach
using hedonic functions in the sense that both are based on the idea that price differences stem
from differences in the attributes of a house, but our approach differs from the hedonic approach
in some important respects. First, we derive a functional form of the price-size relationship only
from the statistical fact that the price and the size of a house follows, respectively, a power-law
and an exponential distribution. We do not need to rely on any economic theories: we do not
need to compare hundreds of regression results with different functional forms (e.g. with or
without log; log-log; semi-log; and so on). Second, we have a clearer criteria and procedure to
decide how many and which attributes of a house should be considered. Our procedure is quite

10



simple; we just conduct a goodness-of-fit test to make sure that the house price distribution is
sufficiently close to a lognormal distribution after controlling for some attributes of a house.8

Third, we do not need to conduct regressions in estimating the coefficient on the size of a
house in the price equation. Instead, we estimate the slopes of the CDFs for the price and the
size distributions in each year, which correspond to the exponents of the power-law and the
exponential distributions (ζt and λt). Then we just calculate the ratio of the two, λt/ζt, to
obtain an estimate for the coefficient on the house size in the price equation. Since we do not
rely on regressions, we do not have to worry about various assumptions needed in conducting
regressions. Also, we do not pool data for several periods, as is often done in hedonic regressions;
all we need is the cross-sectional data in a particular year.

References

[1] Cropper, M. L., L. B. Deck, and K. E. McConnell (1988), “On the Choice of Functional
Form for Hedonic Price Functions,” Review of Economics and Statistics, Vol. 70, No. 4.,
668-675.

[2] Diewert, W. Erwin. (2003), “Hedonic Regressions: A Consumer Theory Approach,” in R.
C. Feenstra and M. D. Shapiro (eds.), Scanner Data and Price Indexes, National Bureau
of Economic Research Studies in Income and Wealth, Vol. 64. Chicago, IL: University of
Chicago Press, 317-48.

[3] Diewert, W. Erwin, Jan de Haan, and Rens Hendriks (2010), “The Decomposition of
a House Price index into Land and Structures Components: A Hedonic Regression Ap-
proach,” Discussion Paper 10-01, University of British Columbia.

[4] Gabaix, X., (2009), “Power Laws in Economics and Finance,” New York University.

[5] Malevergne, Y., V. Pisarenko, and D. Sornette (2009), “Gibrat’s law for cities: uniformly
most powerful unbiased test of the Pareto against the lognormal,” American Economic
Review, forthcoming.

[6] Shimizu, C., K. G. Nishimura, and T. Watanabe (2009), “House Prices in Tokyo: A Com-
parison of Repeat-Sales and Hedonic Measures,” Research Center for Price Dynamics
Discussion Paper No. 48, November 2009.

[7] Triplett, J. (2004), Handbook on Hedonic Indexes and Quality Adjustments in Price In-
dexes, OECD Science, Technology and Industry Working Papers 2004/9.

8In this paper, we have found that the size adjustment makes the price distribution sufficiently close to a
lognormal distribution at least in years without large fluctuations in prices. However, as argued by Diewert et
al. (2010) and others, the size and the location of a house are the two most important attributes to determine
its price. We plan to see whether the distance between the price distribution and a lognormal distribution would
be reduced significantly by considering the location of a house (e.g., commuting time to the central business
district) as an additional attribute.

11


	1
	HousePriceDist0422

