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Abstract 

There is strong empirical evidence that the degree of price stickiness 

differs across commodity items, and that the nonparametric hazard function 

of price changes is downward-sloping with some spikes. We introduce 

item-specific heterogeneity into the standard single-sector model of Calvo 

(1983) and estimate a hazard function of price adjustment, by applying 

duration analysis. We present the appropriate form of heterogeneity for the 

data structure, and show that the decreasing (population) hazard function is 

well described. In the presence of item-specific heterogeneity, the 

probability that prices remain unchanged is predicted to be higher than in 

the single-sector model. 
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1. Introduction 

 

Previous studies (Bils and Klenow, 2004; Dhyne et al., 2005; Saita et al., 2006) have 

shown that the degree of price stickiness differs across commodity items. The 

time-dependent pricing model (Calvo, 1983), in which one single parameter represents 

price stickiness, cannot reproduce the strong empirical evidence in such a way that the 

nonparametric hazard function of price changes is decreasing (Álvarez, Burriel and 

Hernando, 2005). Each item has specific factors related to its survival experience. 

These specific factors, whether observable or not, change the shape of the (individual) 

hazard function. If the variability in hazard is not fully captured by covariates, it is 

necessary to model unobserved heterogeneity.  

However, in many empirical works on price-setting behavior unobserved heterogeneity 

is left unspecified. Therefore, we introduce item-specific heterogeneity into Calvo’s 

(1983) standard single-sector model, and estimate the hazard function of price 

adjustment, by applying duration analysis. This paper provides the appropriate form of 

heterogeneity for the data structure, and shows that the decreasing (population) hazard 

is well described by modeling item-specific heterogeneity.   

Recent papers that analyze monetary shock by the calibrated dynamic general 

equilibrium model show that the degree of monetary non-neutrality implied by a 

multi-sector model is larger than that implied by its single-sector counterpart calibrated 

to the mean frequency of price change. The response to monetary shock is much larger 

in a sticky sector. These findings are consistent with our result that the existence of 

heterogeneity implies the speed of price adjustment slows, because over a period of 

time the effect of price spells with long duration gradually dominates.  

The paper is organized as follows. Section 2 summarizes our approach. Section 3 

presents the model with unobserved heterogeneity that is shared across price spells 

within an item. This is called the shared frailty model. Section 4 discusses the results. 
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2. Duration approach to the problem of price stickiness  

 

Following Aucremanne and Dhyne (2004), the methods used in this field of research 

are the frequency approach and the duration approach. This paper employs the latter. 

The frequency approach first calculates the monthly frequency of price changes by 

items, which is equal to the total number of price changes divided by the total number 

of observed prices. It then aggregates the frequencies weighted by CPI weight to obtain 

the mean frequency. The expected value of waiting time is a reciprocal of the 

frequency of price change. Therefore, the mean frequency implies that the expected 

length of price spell is  

 

)1ln(
11
λδ −

−= ,       (1) 

 

where λ  is monthly frequency and δ  is implied instantaneous frequency1. The 

median of price-change frequency is the middle value of weighted frequency which 

implies the median duration. Bils and Klenow (2004) use the frequency approach by 

first computing the frequency of price changes, and then inferring the implied average 

duration of a price spell for each product category in the U.S. consumer price index. 

The duration approach first specifies the functional form of the hazard function. The 

price-setting behavior described by the Calvo model corresponds to the exponential 

model with constant hazard rate. Calvo (1983) assumes the probability density function 

of a price spell with duration t as follows: 

 

0, >⋅ − δδ δ te .      (2) 

 

This function is divided in two parts. The first, δ , is the hazard function in the Calvo 

                                                  
1Monthly frequency and instantaneous frequency satisfy the equality . If we subdivide one month 

into n equal intervals and assume all firms change their price with probability 

δλ −−= e1
tΔδ  during the period , 

the probability that price change does not occur for one month is 

),( ttt Δ+

( )ntΔ− δ1 . Therefore the monthly probability 

of price change is . Letting ( ntΔ−−= δλ 11 ) 0→Δt , we obtain , or equivalently, δλ −−= e1
( )λδ −−= 1ln . 
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model, which is the instantaneous price-change probability. The second, , is the 

survivor function, i.e., the probability that a price has not been changed until t. We 

construct the likelihood function according to this functional form, and maximize it 

using all the data to obtain the maximum likelihood estimators, which summarize the 

shape of hazard function and survivor function. The median duration is the elapsed 

time, which satisfies the condition that the survival probability is 0.5: i.e., the 

proportion of unchanged price spells is only 50 percent.  

te δ−

One advantage of this approach is that it clearly evaluates the pattern of price 

adjustment. As we show later, the nonparametric hazard rate is significantly higher at 

12, 24, and 36 month suggesting that price changes tend to occur annually. We can 

introduce various types of heterogeneity. Álvarez, Burriel, and Hernando (2005) use 

finite mixture models, which presuppose that the population consists of homogeneous 

subpopulations. They specify the hazard function for each subpopulation, and show 

that the mixture of hazard functions varies according to how they specify functional 

forms, and how many subpopulations the model contains. They document that it is 

optimal to estimate a model composed of 3 groups with a different but constant hazard 

rate, plus 1 group with a positive hazard rate at every 12 months. In our shared frailty 

model, we assume a priori that the population consists of heterogeneous items, which 

is supported by the result that the degree of price stickiness differs across items. 

Formally, the difference between the finite mixture model and our shared frailty model 

is that the former is a fixed-effects model with random groups, whereas the latter is a 

random-effects model with known groups.2  

                                                  
2 See Mosler (2003) and Cameron and Trivedi (2005) for further discussion. 
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3. Shared frailty model for price-setting behaviors 

 

In this analysis, we employ a sample of the retail prices underlying the computation of 

the Japanese consumer price index. These prices are collected on a monthly basis by 

the Statistic Bureau, Ministry of Internal Affairs and Communication, and appear in the 

Monthly Report on the Retail Price Survey. Prices are reported for each city with a 

prefectural government, and for cities with a population of 150,000 or more. The 

analysis covers the period from January 2000 to December 2005. Our raw data set 

considers 498 items, covering 68 % of the Japanese CPI in 2000, and consisting of 

2,063,148 price records. 

Our data is a Japanese counterpart of previous studies following Bils and Klenow 

(2004). These studies use outlet-level price data; however, we use the average of prices 

quoted at each outlet. Since we cannot access the price data of each outlet where the 

price report was conducted, our data set provides the best available information in 

Japan for measuring the degree of price stickiness. Saita et al. (2006) also use the 

source. As they note, the frequency of price change may have an upper bias when we 

use average prices, because we count the number of price changes even if some 

outlet-level prices do not change.  

We assume that price change does not occur more than twice because our data is 

monthly data, to enable us to observe the price of each category only once a month. 

This is a limitation of our analysis, and of all previous studies using monthly data.  

Table 1 describes our data set. In our retail price data, several price spells are observed 

per item. We thus call them multiple-spell data. When we compute the duration of 

price spells directly, we need to trim the original dataset. First, we discard all 

left-censored spells. The duration of price spells quoted before the beginning of our 

observation period cannot be calculated, because we do not know the starting time of 

price spells. This is the problem of left-censoring (Amemiya, 1984). Since our data is 

multiple-spell data and the observation period is sufficiently long, this exclusion does 

not create serious problems. Second, we remove price spells that end with an item 

substitution. This is also negligible, because these spells constitute a small fraction of 

the total of price spells.  

To analyze item-specific effects, we must assume that the heterogeneities are not 
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specific to a price spell, but are shared within each item. Therefore, the multiple-spell 
data lead to a hierarchical structure. Specifically, let ),,1( Gii L=υ  be independently 

and identically distributed random variables with a common distribution. We assume 
the hazard function for the th subject in thei j th group given the j th heterogeneity is 

 
 )|()( ijiij Xtt λυλ ⋅= .      (3) 

 

This implies that the cumulative hazard function for the same subject conditional on 
the j th heterogeneity is 

 

)|()|()()(
0 iji

t t

o ijiijij XtdsXsdsst Λ⋅==≡Λ ∫ ∫ υλυλ .   (4) 

 

Using the identity { )(ln)( tSt −= }Λ , we obtain the conditional survivor function 

 

[ i
ijij XtStS υ)|()( = ] .      (5) 

 
For the th subject in thei j th group, the shared frailty model treats the hazard as 

equation (3). We assume that the shared frailties are i.i.d. samples from a Gamma 

distribution. Since the scale parameter of the distribution is unidentifiable, the mean 

and variance are normalized to set [ ] 1=υE  and [ ] δυ =V , respectively.3 The density 

therefore becomes 

 

0,
)/1(

)/exp()( /1

)1/1(

>
Γ

−
=

−

υ
δδ

δυυυ δ

δ

g .     (6) 

 

The joint survivor function for the th group is given by  i

 

                                                  
3 The gamma distribution ),( δkΓ  has δυ kE =][ , . Setting2][ δυ kV = δ/1=k , we obtain the normalized 
parameter values.  

 6



δδ /1

1

1

111

])|(1[

])|([

],,Pr[),,(

−

=

=

∑

∑

Λ+=

Λ=

>>=

i

i

iii

n

j
ijij

n

j
ijij

ininiiini

Xt

XtLP

tTtTttS LL

    (7) 

 
Here, )][exp()( xExLP υυ −=  is the Laplace transform of the frailty υ . See Appendix 

A for the derivation in detail. The log-likelihood contribution of the th group is  i
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where  is the indicator of the price change and ijd ∑ =
= in

j iji dD
1

is the number of 

price changes in the th group. We discuss this in detail in Appendix B. We then 

obtain the full log-likelihood  

i

 

.),,(log),,(
1
∏
=

=
G

i
iLl βλδβλδ      (9) 

 

We specify that the baseline hazard function is constant over time, i.e., the baseline 
hazard function and the cumulative hazard function become λλ =)|( ijXt  and 

tXt ij λ=Λ )|( , respectively. Referring to equation (3), even though the baseline hazard 

is constant and the same across the items, the individual hazard functions )(tijλ  may 

differ because of frailty iυ . This exponential model with Gamma shared frailty is the 

natural extension of Calvo model, and allows price stickiness to vary across items.  
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4. The Estimation Results 

 

Since we specify the baseline hazard function, the maximum likelihood estimators are 

obtained by maximizing equation (6) using the Newton-Raphson method.4  

Figure 1 shows the predicted hazard from the parametric shared frailty model and 

nonparametric hazard function, i.e., the Kaplan-Meier product limit estimators of 

hazard rate. The shared frailty model reproduces the decreasing hazard function and 

describes the shape of the nonparametric hazard function fairly well, except for 

short-run prediction. If we ignore unobserved heterogeneity, the hazard rate is constant 

at 0.365, as shown in Table 2. This means that Calvo model overestimates the hazard 

rate for a long-term spell.  

One reason is that, in the Calvo model, the hazard rate of price changes is common to 

all items, because it assumes that economy consists of homogeneous firms, which 

adjust their price randomly, but share a common probability of price change. This 

assumption of homogeneity cannot be supported empirically. The estimated frailty 

variance  is 1.149. Examining the likelihood-ratio test of δ̂ 0:0 =δH , the null 

hypothesis is soundly rejected at the 1% level of significance. Therefore, we conclude 

that the prediction errors are caused by item-specific heterogeneity. 

Figure 2 shows that the survival probabilities of the Calvo model are significantly 

smaller than those of the shared frailty model. The median duration from the shared 

frailty model is slightly longer than that from the Calvo model. The predicted median 

duration is 2.87 months, which is about 1.5 times longer than the median duration 

implied by the price-change frequency of the single-sector model. The significant 

difference lies in the predictions at longer durations. The smaller probabilities in Calvo 

model arise because it ignores the effect of sticky items, which gradually dominate 

over time.  

The implication of our findings relates to an import matter for monetary economics, 

since the dynamics of monetary economies depend to some extent on how to deal with 

sectors with a lower frequency of price change.  

                                                  
4 If we fit a Cox model with shared frailty in which the baseline hazard function is not specified, the estimates are 
obtained by using an EM algorithm. See Klein and Moeschberger (1997) and Yu (2006) for further discussion. 
Nakamura and Steinsson (2006b) use Cox proportional hazard model with covariates (seasonal dummies) and 
Gamma frailty and analyze the baseline hazard function by sector.  
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Recent papers that analyze monetary shock using the dynamic stochastic general 

equilibrium model show that the degree of monetary shock implied by a multi-sector 

model is larger and more persistent than that implied by a single-sector model 

calibrated to the mean frequency of price change (Carvalho, 2006; Nakamura and 

Steinsson, 2006a). Carvalho (2006) introduces heterogeneity into Calvo’s (1983) 

model and concludes that to better approximate a single-sector model requires a much 

lower frequency of price changes than a multi-sector model. Our main finding can be 

restated as follows: the existence of heterogeneity implies that the speed of price 

adjustment slows down as time elapses. To approximate the survivor function of the 

shared frailty model, it is necessary to use a lower value for the hazard rate in the 

Calvo model. This conclusion is consistent with Carvalho (2006).   
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5. Conclusion 

 

This paper analyzes the heterogeneity in price-setting behavior using duration analysis. 

We introduce item-specific heterogeneity into the single-sector model, and show that 

the shared frailty model reproduces the decreasing hazard function, and describes the 

shape of the nonparametric hazard function fairly well.  

In the Calvo (1983) model, the hazard rate of price changes is common to all items, 

because it assumes that the economy consists of homogeneous firms. We establish that 

this assumption of homogeneity cannot be supported empirically. We examine the 

likelihood-ratio test of the null hypothesis that the frailty variance is equal to zero. The 

hypothesis is soundly rejected at the 1% level of significance suggesting that the CPI 

basket contains highly heterogeneous components. Therefore, we conclude that the 

prediction errors are caused by item-specific heterogeneity. 

We find that, in the presence of item-specific heterogeneity, the probability that prices 

remain unchanged is higher than in the single-sector model. We document that, to 

approximate the survivor function of the shared frailty model, it is necessary to use a 

lower value for the hazard rate in the Calvo model. 
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Table 1 

 Descriptive statistics 

mean min median max
Number of items  498
Number of price spells 677169
(First) entry time 0 0 0 0
(Final) exit time 2.721 1 1 71

Time at risk 1798327 2.656 1 1 71
Number of uncensored spells 656581 0.970 0 1 1

Category total Per price spell

Source.－Retail price data used for the calculation of the Japanese CPI (2000-2005).  

 11



 

 

 

 

 

 

 

 

 

Table 2 

The Comparison of Calvo Model and Shared Frailty Model 

Mean 25% Median 75%

Calvo (1983) model 0.37 2.74 3.60 1.90 0.72
Shared frailty model - - 9.36 2.87 0.72

Duration of price spells Hazard rate
of  price
change

Source.－Retail price data used for calculation of the Japanese CPI (2000-2005).
Note. － Hazard rate of price change is unweighted predicted hazard function. Price
spell durations are reported in months.

 12



 

 

 

 

 

Figure 1 

 

 

Population hazard from the exponential model with Gamma shared frailty vs. 

Kaplan-Meier estimator: Retail price data in Japan from 2000-2005: Unweighted 

sample (498 items). 
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Figure 2 

0
.2

5
.5

.7
5

1
P

ro
b
ab

ili
ty

 o
f 

re
m

ai
n
in

g 
u
n
c
h
an

ge
d

0 12 24 36 48 60 72
Months since the last price change

Shared Frailty Model

Calvo (1983) Model

 

Survivor function from the shared frailty model and the Calvo (1983) model. Same 

data as Figure 1. 
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Appendix A. The derivation of the joint survivor function for the th item. i

From equation (7), we obtain 
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Appendix B. The likelihood function for the th item i
Given the th heterogeneity i iυ , the contribution to the likelihood for the j th price 

spell in th item is i
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Using the expression of cumulative hazard function, equation (B.1) can be written as  
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Consequently, the conditional likelihood function for the th item is  i
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where . Integrating out ∑ =
= in

j iji dD
1 iυ , we obtain the unconditional likelihood  
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where )( ig υ  is the density function given in equation (6). Therefore we have 
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As in Appendix A, the integration in the last equality becomes 
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Substituting (B.5) into (B.4), we recover equation (8). 
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