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Abstract

Is the actual price-setting behavior of an individual commodity
item consistent with the assumptions of a sticky-price model? Part
of the question may formally be addressed by performing a goodness-
of-fit test for price duration distributions. For each of the 429 items
in the Japanese retail price data for 2000–2005, we fitted the stan-
dard parametric models with or without unobserved heterogeneity to
the data and tested the goodness of fit. We found that 8.6 percent
of the tested items cannot reject the hypothesis that the underlying
distribution is exponential, which corresponds to the time-dependent
pricing model of Calvo (1983).
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1 Introduction

This paper examines the distributional assumption of the duration of price
spells. It forms part of an attempt to construct a formal theory dealing with
sticky prices, because existing sticky-price models in macroeconomics explic-
itly formulate the mechanism of a firm’s price change by assuming that the
length of price spells follows a certain distribution. One example is the Calvo
(1983) model, which assumes that the probability of a firm’s price change is
determined exogenously and does not change over time. This assumption
implies that price spell durations have an exponential distribution with a
constant hazard rate. The other example is the Dotsey, King, and Wolman
(1999) model, which assumes a fixed cost of adjusting price. This model
predicts a monotonically increasing hazard function when the general level
of prices continues upward.

In this paper, we examine the distributional assumption using a Pearson-
type goodness-of-fit test for censored data, which is based on a maximum like-
lihood estimation of parametric hazard function (Akritas (1988) and Hjort
(1990)). Intuitively, the test statistic compares, on a span-by-span basis, the
observed number and expected number of price changes implied by the hy-
pothesized hazard function. Compared to the Wald test frequently used for a
specification check for parametric model, our test statistic is quite general, in
the sense that it does not require the explicit statement of alternative models
that nest the null model. Thus, the hypothesized hazard function is not lim-
ited to exponential, but also includes Weibull and other kinds of parametric
hazard function. By performing the goodness-of-fit test, we will investigate
whether actual price-setting behavior is consistent with the implications of
sticky-price models.

Empirical studies on price stickiness have recently focused on the volumi-
nous price dataset underlying the computations of the Consumer Price Index
(CPI) and produced a rapidly growing literature. (See, for example, Bils and
Klenow (2004); Nakamura and Steinsson (2008) for the United States; Dhyne
et al. (2006) for the European Union; and Higo and Saita (2007) for Japan.1)
Since then, researchers have discovered stylized facts at the individual item
levels as well as at the aggregated level.2 The interest of our analysis lies in

1This subject has been studied extensively in many countries other than those listed
above. See also Álvarez (2007) for a useful survey.

2A remarkable finding at the aggregated level is that the hazard function exhibits a
downward slope. Many authors attribute the discrepancy between this empirical finding
and the implication of sticky-price models to heterogeneity in price-setting behavior. Using
the finite mixture model, Álvarez et al. (2005) and Ikeda and Nishioka (2007) show
that the aggregation of several price-setters facing different hazard functions results in a
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the process of price changes at the item level. The reason is that the compo-
nent items of the CPI are highly heterogeneous and, thereby, the estimates
of the hazard rate from the pooled sample of several items are influenced by
the heterogeneity effect. In this paper, we conduct the goodness-of-fit test
for each of the 429 items available in the Monthly Report on the Retail Price
Survey for 2000–2005.

For the inference of the unknown distribution at the item level, previous
studies frequently examine how the nonparametric hazard rate changes with
time.3 For example, by doing this Higo and Saita (2007) classify the item-
level hazard functions into three categories: flexible type, Taylor type, and
decreasing hazard type. However, it can be problematic to draw conclusions
about the distributional assumptions on the basis of the graphical represen-
tation. One reason is that in some items, we are quite uncertain about which
of these shapes characterizes the process of price change: decreasing, con-
stant, increasing, or a mixture of them. More seriously, the precision of the
estimate of the hazard rate gets lower as the elapsed time becomes longer
and, therefore, the judgment can change according to how we evaluate the
hazard rates at the longer duration, which is less precisely estimated. The
other reason is that unobserved heterogeneity in price-setting behavior may
exist at the item level. In that case, we cannot judge from the graphical rep-
resentation whether the decreasing hazard function exhibits true duration
dependence or merely the heterogeneity effect.

In contrast to the classification of Higo and Saita (2007), we draw a clear
distinction as to whether an item rejects the hazard function with a partic-
ular shape. For the inference of the unknown distribution, we hypothesize
two parametric models: the exponential model and the Weibull model. Con-
sequently, our analysis formally addresses such questions as sample of how
many items are from exponential distribution with a constant hazard rate or
question whether an item that retains the hypothesis of Weibull distribution
with monotonically increasing hazard rates exists or not. Furthermore, in
order to account for the unobserved heterogeneity, we model the gamma-
distributed heterogeneity that appears multiplicatively in the hazard func-

decreasing hazard function. Nakamura and Steinsson (2008) and Matsuoka (2007) reach
the same conclusion using a random effect model in which the item-level heterogeneity is
incorporated.

3Exceptionally, Fougère, Le Bihan, and Sevestre (2007) test whether the hazard rates
are constant over the elapsed time since the last price change as a specification test for
exponential model. They use a piecewise-constant hazard model and test the equality of
hazard rates over the span of time. According to their testing procedure, we can confirm
our goodness-of-fit test results for exponentiality, such as items that cannot the exponential
hypothesis have in common a low frequency of price changes.
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tion. Fitting the exponential-gamma mixture model and the Weibull-gamma
mixture model to the data, we investigate whether the unobserved hetero-
geneity, to which we presumably attribute the city characteristics or the
pricing strategy of an outlet, can account for the process of price changes at
the item level.

Our test results can be summarized in the following four findings. First,
8.6 percent of the tested items (in percentage share of CPI weight) cannot
reject the hypothesis that the underlying distribution is exponential, which
corresponds to the time-dependent model of Calvo (1983). Second, those
items that retain the hypothesis of exponentiality have in common a low
frequency of price changes. The frequency of price changes for these items is
limited to 11 percent per month. Some items in the subgroups such as Eating
out in the Food sector, Repairs and maintenance in the Housing sector, and
Recreational goods and services in the Reading and recreation sector lead
to the nonrejection of the hypothesis of exponentiality. The results are also
verified by the Shapiro and Wilk (1972) test for exponentiality. Third, the
well-fitting Weibull hazard models for our data have a duration-dependent
parameter that is nearly equal to or less than one, which provides little sup-
port for monotonically increasing hazard function at the item level. Fourth,
the performance of the model with unobserved heterogeneity is worse than
that of the model without unobserved heterogeneity. In view of the results, it
is not easy to attribute the reason for the decreasing hazard estimates simply
to the unobservable characteristics of the survey cities.

The remainder of the paper is organized as follows. Section 2 formulates
the process of price change using the notion of counting processes, on which
our test statistic is based. In Section 3, we show the principle of our goodness-
of-fit test and the related graphical method using nonparametric estimates
of the cumulative hazard rate. In Section 4, we summarize the properties
of our four hypothesized models. In Section 5, we show the nonparametric
test for an exponential hypothesis by Shapiro and Wilk (1972). In Section 6,
after we describe our price data, we discuss the results of the goodness-of-fit
test. Section 7 concludes our analysis.

2 Counting processes and Martingales

Our test statistic is based on the theory of counting process.4 A counting
process is a stochastic process whose value counts the number of events. It
is an increasing (right continuous) process with jumps of size 1. In order to

4See Kalbfleisch and Prentice (2002) and Andersen et al. (1993) for details.
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construct the goodness-of-fit test statistic, a good starting point is to describe
two counting processes: the failure process and the at-risk process.

In our analysis, “failure” means an observed price change of an item. The
price change of the ith item (i = 1, . . . , I) in the jth city (j = 1, . . . , J(i))
is defined as P ij

t∗ 6= P ij
t∗−1, where t∗ is a calendar time. In the following

analysis, we do not focus on the calendar time when price changes occur, but
on the elapsed time over which price remain unchanged, that is, the time
between two consecutive price changes. Formally, the elapsed time of the
kth price spell of the ith item in the jth city, tijk (k = 1, . . . , K(i, j)), is
defined as follows: let t∗ijk be the calendar time when the kth event of price
change occurs in the jth city. The event indicates the onset of the risk of
a price change for the kth price spell. Suppose our observation of the kth
spell is completed, i.e., we observe the price spell until the k + 1th (next)
price change occurs. Then we have the elapsed time of the kth price spell,
tijk ≡ t∗ijk+1 − t∗ijk.

Next suppose that we can no longer observe the kth price spell by rea-
son other than its price change and this incomplete state of the observation
arises at (calendar) time c∗ijk. In this case, we say that the kth price spell
is right censored at time c∗ijk. Right censoring can occur, for example, when
a price spell ends with an item substitution, or when the price change has
not occurred by the end of the observation period. The censoring time cijk

is also defined as the elapsed time since the last price change and therefore
cijk ≡ c∗ijk − t∗ijk.

Now we are in a position to understand the failure and the at-risk pro-
cesses. Suppose that the kth price spell of the ith item in the jth city
remains unchanged for tijk. The failure process, in other words, the price
change process, is defined as

Nijk(t) ≡ 1(tijk ≤ t). (1)

The process of price change is a sequence of zero and one. For example, a
price spell with a five-month duration can be represented by the sequence of
{0 0 0 0 1}. The at-risk process of price changes can be written as

Yijk(t) ≡ 1(tijk ≥ t, cijk ≥ t), (2)

where cijk denotes the censoring time. The at-risk process takes one as long
as we observe that the price does not change just before time t. Hence, if
Yijk(t) = 1, the price spell is exposed to the risk of price change. These
two processes are the basic building blocks on which our test statistic is
constructed.
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Superposing these individual processes, we obtain the number of observed
price spells changed in [0, t], Ni(t) =

∑
j

∑
k Nijk(t) and the number of price

spells at risk just before time t, Yi(t) =
∑

j

∑
k Yijk(t). Denoting a time just

before t by t−, we define dNi(t) ≡ Ni(t
− + dt) − Ni(t

−) as the increment of
Ni(t) over the small interval [t, t+dt). Now we are able to construct a model
that describes the transition of price spells. The essential part of the model
is the hazard function λi(t) which, multiplied by Yi(t), implies the expected
number of price changes in the ith item at time t. The model can be written
as follows:

E[dNi(t)|Ft− ] = Yi(t)λi(t)dt, (3)

where Ft− is an information set during the period [0, t), which is referred to
as the filtration of counting process.

For the model defined in Equation (3), consider the following process

Mi(t) = Ni(t) −
∫ t

0

Yi(s)λi(s)ds, for all t ≥ 0. (4)

The process Mi(t) is called a counting process martingale5 and satisfies the
condition E[dMi(t)|Ft− ] = 0 for all t. The second term on the right-hand
side is called the compensator of the counting process, which equals the
cumulative sum of the expected number of price changes in [0, t]. Denoting
the compensator by Ei(t), Equation (4) can be written compactly as Mi(t) =
Ni(t) − Ei(t). The property of a martingale process plays a crucial role in
our test statistic.

3 Tests for distributional assumptions

In this section, we will show the two kinds of model checking. One is a
graphical check that compares the theoretical cumulative value of the hazard
function with the nonparametric estimates of cumulative hazard rate, which
is called the Nelson–Aalen estimator.6 The other is the goodness of fit test
statistic on which our analysis is based. They are conceptually equivalent
but the latter is more rigorous. In the following description, we shall omit
the subscript i to simplify the notation while all quantities are calculated on
an item basis.

5The first and second term on the right-hand side of Equation (4) are both the sum of
individual processes, which is called a superposed process. The important property of the
superposed process is that the sum of individual martingale process is also a martingale:
Suppose E[dMijk(t)|Ft− ] = 0 for all t, j = 1, . . . , J(i), k = 1, . . . ,K(i, j), then Mi(t) =∑

j

∑
k Mijk(t) is a martingale with respect to Ft (See Kalbfleisch and Prentice (2002)).

6Andersen et al. (1993) illustrate the details of the graphical check.
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3.1 Graphical check using the Nelson-Aalen estimator

The correct specification of a certain parametric hazard function can be
checked by graphically comparing the Nelson–Aalen estimator7

Â(t) =

∫ t

0

{J(s)/Y (s)}dN(s) (5)

with the parametric cumulative hazard function

A(t; θ) =

∫ t

0

J(s)λ(s; θ̂)ds, (6)

where J(s) ≡ 1(Y (s) > 0) so that we can define the processes only in the
regions where a price spell is observed. In Equation (6), λ(s; θ̂) is a parametric
hazard function with the maximum likelihood estimator θ̂. We will specify
the hypothesized hazard functions in Section 4. If the difference Â(t) −
A(t; θ̂) is considerably large over t ∈ [0, T ], where T denotes the largest
of the observation time, the parametric model is judged as a poor one. The
goodness-of-fit test described below gives a criterion for this kind of graphical
check.

3.2 Goodness-of-fit test

Now we describe the goodness of fit test for the censored data. Our null
hypothesis is the following composite hypothesis

H0 : λ(t) ∈ L = {λ(t; θ); θ ∈ Θ ⊂ Rp}, (7)

that is, the true hazard function λ(t) belongs to the parametric family of
hypothesized hazard functions L. When the null hypothesis holds, λ(t) can
be specified by λ(t; θ0), where θ0 is the p-dimensional true parameter vector.
Since θ0 is unknown, we employ the maximum likelihood estimator θ̂ corre-
sponding to the hypothesized hazard function. This test statistic, which is
based on the maximum likelihood estimator, is originally derived by Akritas

7Equation (5) is expressed by using the notion of the Lebesque–Stieltjes integral. When
the integrator N(s) is a right continuous step function, it will have many jumps at each
of the points a1, a2, . . . , where ∆N(an) = N(an) − N(a−

n ) > 0. In this case, the Stieltjes
integral becomes ∫ t

0

{J(s)/Y (s)}dN(s) =
∑

n:0<an≤t

J(s)
∆N(an)
Y (an)

.

See Fleming and Harrington (1991) for detail.
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(1988) but its general framework is proposed by Hjort (1990). We follow
Hjort (1990) and present the principle of the test.

Hjort (1990) derives the limit distribution of the following process

Hn(t) =
√

n

∫ t

0

Kn(s)J(s){(1/Y (s))dN(s) − λ(s; θ̂)ds}, (8)

where Kn(t) is an almost surely bounded weighting process.8 When Kn(t) =
1, the statistic reduces to Hn(t) =

√
n{Â(t) − A(t; θ̂)}, which compares the

Nelson–Aalen estimates and the parametric cumulative hazard function. Set-
ting Kn(t) = Y (t)/n, the statistic now becomes Hn(t) = {N(t)−E(t; θ̂)}/

√
n

and resolves into the comparison between the observed and expected number
of price changes. Our analysis employs the latter case.

As we mentioned above, the test statistic compares these quantities on
a span-by-span basis. Let 0 = a0 < · · · < am = T be a division of analysis
time into m cells Il = (al−1, al], l = 1, . . . ,m. We then define

Qn,l =
1√
n

[
N(al−1, al] −

∫
Il

Y (s)λ(s; θ̂)ds

]
=

1√
n

(Nl − El), (9)

and Qn = (Qn,1, . . . , Qn,m)′. The numerator of Qn,l is the difference between
the observed and expected number of events in the lth interval.9 Hjort (1990)
shows that

Qn
D−→ N(0, R), (10)

as n → ∞. On this basis we obtain the following test statistic

X2
n = Q′

nR̂−Qn, (11)

where R̂− is the generalized inverse of any consistent estimator of the co-
variance matrix R. The m × m covariance matrix R can be written in the
following form

R = D − S ′Σ−1S. (12)

Note that Equation (12) implies the generalized inverse of R

R− = D−1 + D−1S ′G−SD−1, (13)

8The derivation of the limit distribution requires a fundamental convergence theo-
rem, the so-called martingale central limit theorem. For the details of the theorem, see
Kalbfleisch and Prentice (2002). The formal proof of the weak convergence of the process
in Equation (8) is given by Hjort (1990) and is also available in Andersen et al. (1993).

9Hjort (1990) proposes that we should choose the m cells so that each cell contains at
least five observations.
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where G− is the p × p generalized inverse of G = Σ − SD−1S ′. The com-
ponent parts of R are as follows: D is a diagonal matrix with elements
dl =

∫
Il

y(s)λ(s; θ0)ds, where y(s) is a probability limit of Y (t)/n; S is the

p × m matrix (b1, . . . , bm), in which bl =
∫

Il
y(s)ψ(s; θ0)λ(s; θ0)ds, where

ψ(s; θ0) is the p-dimensional score vector of logλ(s; θ0); and p× p covariance

matrix Σ =
∫ T

0
y(s)ψ(s; θ0)ψ(s; θ0)

′λ(s; θ0)ds. These quantities are naturally
estimated by

d̂l = El/n = n−1

∫
Il

Y (s)λ(s; θ̂)ds, (14)

b̂l = n−1

∫
Il

Y (s)ψ(s; θ̂)λ(s; θ̂)ds, (15)

Σ̂ = n−1

∫ T

0

Y (s)ψ(s; θ̂)ψ(s; θ̂)′λ(s; θ̂)ds. (16)

Using Equations (9) and (13)-(16), we can simplify the test statistic

X2
n = Q′

nD̂−1Qn + Q′
nD̂−1Ŝ ′Ĝ−ŜD̂−1Qn (17)

=
m∑

l=1

(Nl − El)
2

El

+ V ′
nĜ−Vn,

where Vn =
√

n
∑m

l=1{(Nl − El)/El}b̂l and Ĝ− = (Σ̂ −
∑m

l=1 b̂lb̂
′
l/d̂l)

−.
Under the null hypothesis (7), the test statistic converges in distribution

to chi-squared distribution with degrees of freedom df = Rank(R), which is
equal to the number of cells, m. For a large value of the statistic, say X2

n ≥
χ2

α,m, where χ2
α,m is the upper α critical point of a chi-squared distribution

with m degrees of freedom, we reject the hypothesis.10

[Table 1 about here.]

Table 1 illustrates the procedure of the goodness-of-fit test at the item
level. Suppose we wish to test the hypothesis that the price duration of
Coffee (eating out) is a sample from an exponential distribution. The tran-
sition of price spells is summarized in the statistics shown in the first four
columns. From this data, we obtain the maximum likelihood estimator that
corresponds to the exponential model θ̂ (in this case, θ̂ = 0.054, thus the
mean duration is 18.5 months). We then divide the observation period into

10When the dimension of the parameter vector p ≥ 2, the computation of the generalized
inverse of R̂ is quite intractable. Hjort (1990) points out a slightly conservative test
procedure that rejects H0 if X2

0,n =
∑m

l=1(Nl − El)2/El ≡
∑m

l=1 Zl ≥ χ2
α,m. Except for

a one-dimensional case, we follow his remark and conduct the conservative version of the
test.
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m cells. Following the remark shown in Footnote 9, when we observe less
than five price changes at a point in the interval, we add the number to the
number of price changes at the next point until the total number of price
changes in the cell reaches at least five. The boxes in the table indicate that
process. For example, we observe 7(=2+5) complete price spells that end
with a price change in the first box, which form the observed price changes
in the 10th cell, N10. Consequently, the number of cells m amounts to 21.

From the calculations shown in the last column in the table, we obtain
X2

0,n =
∑m

l=1 Zl = 22.18. The second term on the right-hand side of Equa-
tion (17) is calculated to be 1.28. Therefore, we have the test statistic for
exponentiality

X2
n = 22.18 + 1.28 = 23.46, (18)

which has approximate chi-squared distribution with m = 21 degrees of
freedom. The associated p–value is 0.320, which leads us to retain the null
hypothesis of exponentiality.

4 Parametric models

In order to make the inferences about unknown price duration distributions,
we test whether the underlying hazard function belongs to a certain para-
metric family as shown in the hypothesis (7). For the hypothesized hazard
function, we consider the following four parametric models: exponential;
Weibull; exponential-gamma mixture; and Weibull-gamma mixture. In this
section, we will discuss the features of these models.11

4.1 Models without unobserved heterogeneity

Model 1. Exponential model

λ(t; θ) = µ. (19)

The simplest parametric model is the exponential model with a constant
hazard rate. In this case, the parameter is one-dimension, i.e., θ = µ. This
model has strong economic implication because it corresponds to the price-
setting behavior of Calvo’s (1983) model, where price changes occur according
to the Poisson process with an incidence rate of µ, which is referred to as the
frequency of price changes. It is not difficult to confirm that the maximum
likelihood estimator of µ is identical to the frequency of price changes.12

11For the details of parametric hazard functions, see Cameron and Trivedi (2005) and
Klein and Moeschberger (2003).

12See, for example, Fleming and Harrington (1991).
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Model 2. Weibull model

λ(t; θ) = µαtα−1. (20)

A natural generalization of the exponential model is the Weibull model, which
allows the hazard function to change monotonically over time. The param-
eter is θ = (µ, α)′, which consists of the scale parameter µ and the shape
parameter α. The shape parameter α evaluates the duration dependence
since the shape of the hazard function is monotonically increasing (decreas-
ing) if α is more (less) than 1. For α = 1, the Weibull distribution is an
exponential distribution and exhibits no duration dependence. If the price
spells of some items are from the Weibull distribution with α > 1, we may
support the state dependent model of Dotsey, King, and Wolman (1999), in
which the hazard function of price changes monotonically increase under the
premise that prices continue to rise.13

4.2 Models with unobserved heterogeneity

The models we mentioned so far presuppose that the samples within an item
are homogeneous in terms of the intensity of price changes. However, there is
some reason that unobserved heterogeneity exists even at the item level. As
Higo and Saita (2007) state, unobserved heterogeneity may arise because of
the differences in a city attribute or the pricing strategy of individual outlet.
According to this remark, we also fit the model that allows heterogeneity
across cities. Generally, the individual hazard function can be written as

λjk(t|υj) = υjλ0(t), (21)

where υj is the unobserved heterogeneity that is specific to the jth city and
λ0(t) is the baseline hazard function. As we can see from Equation (21), the
heterogeneity effect υj appears multiplicatively and thus shifts the individual
hazard function proportional to its baseline hazard. We assume that υj is
independently and identically distributed as Gamma(1,δ). For the baseline
hazard λ0(t), we consider exponential and Weibull hazard functions. We will
show the aggregated hazard function for each specification below.

Model 3. Exponential-gamma mixture model

13A full examination of the Dotsey, King, and Wolman (1999) model requires careful
consideration of the firm’s relative price, which is beyond the scope of our analysis.
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λ(t; θ) = µ[1 + µδt]−1. (22)

Here, we specify the baseline hazard function as constant over time, that is,
λ0(t) = µ. The parameters µ and δ denote the baseline hazard rate and the
(normalized) variance of gamma distribution, respectively. The value of δ
indicates the degree of heterogeneity among individuals. In model 3, even
if the individual hazard functions are constant overtime, in other words,
they exhibit no duration dependence, the aggregated hazard function can be
decreasing according to the value of δ. This is an effect of aggregating across
heterogeneous individuals.

Model 4. Weibull-gamma mixture model

λ(t; θ) = µαtα−1[1 + (µδtα)]−1. (23)

The baseline hazard function of the last model is Weibull, which allows the
individual hazard functions to monotonically change over time. The param-
eters are the scale parameter µ, the duration dependence parameter α, and
the heterogeneity variance parameter δ. This model can account for both the
heterogeneity effect and duration dependence. A well-fitting Weibull-gamma
mixture model can explain the interaction of both effects: The aggregated
hazard function is decreasing due to the heterogeneity effect while the indi-
vidual hazard function exhibits positive duration dependence.

5 Shapiro–Wilk test for exponentiality

We have seen general framework for testing distributional assumptions for the
censored data so far. As for a test of the composite hypothesis of exponential
distribution, there is another class of nonparametric tests. Among these
tests, Shapiro and Wilk (1972) propose a basic and fairly simple test for
exponentiality.14 The principle of the test, which is similar to their famous
test for normality (Shapiro and Wilk (1965)), is to evaluate the adequacy of
the linear regression of the ordered observations on the expected values of
the order statistics.

Let x1 ≤ x2 ≤ · · · ≤ xN denote the N order statistics based on the
durations of complete price spells that end with a price change. Then the
test statistic

W =
(x̄ − x1)

2

(N − 1)σ̂2
, (24)

14An example of the application to economic issues is the investigation of duration
dependence in the American business cycle by Diebold and Rudebusch (1990).
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where x̄ =
∑N

i=1 xi/N and σ̂2 =
∑N

i=1(xi−x̄)2/N . The important property of
the test statistic is that the distribution is invariant to the parameter values
of exponential distribution and depends only on the sample size of complete
spells, nc. Shapiro and Wilk (1972) report the simulated percentage points of
the test statistic for sample size nc = 3, . . . , 100. In order to test items, whose
number of complete price spells exceeds 100, we extend the statistical table
of the percentage points for nc > 100. We obtain the null distribution by
generating 5000 samples of the test statistic for each sample size of an item.15

The test statistic is to be used as a two-tailed test and, therefore, we reject
the hypothesis at a significance level α if W ≤ h or k ≤ W , where h and k
are the (α/2)100th and (1 − α/2)100th percentiles of the null distribution,
respectively.

6 Empirical Analysis

6.1 Data

We employ a sample of the retail prices underlying the computation of the
Japanese CPI. These prices are collected on a monthly basis by the Statistics
Bureau, Ministry of Internal Affairs and Communications, and appear in the
Monthly Report on the Retail Price Survey. Prices are reported for each city
with a prefectural government and for cities with a population of 150,000 or
more. The analysis covers the period from January 2000 to December 2005.

Preferably, we include as many items as possible, but three groups of
items are left out of consideration so as not to create a severe bias in our
analysis. First, we exclude items that were newly listed as a component
item of the CPI and that were not used for calculation of the CPI during
the observation period.16 Second, we exclude seasonal items such as fruits,
vegetables, or clothing in which the maximum length of price spells is fairly
short due to the right-censoring. Third, we remove items that the statistical
agency does not survey every month. These items include, for example, PTA
membership fees that are surveyed in April and September every year.

In addition, we exclude two kinds of price data from the original data
set. First, we exclude left-censored price spells, whose duration is unknown
to us due to the censoring of the starting time. Second, we exclude the price

15Shapiro and Wilk (1972) generate 5000 samples of the test statistic for nc ≤ 50 and
[250, 000/nc] samples for 50 < nc ≤ 100.

16If a new product replaces an old one, we do not exclude the price data of both products,
instead, we treat the price spell of the old product as a right-censored spell, censored at
the time when the item substitution occurs.

13



spells whose number of collected prices in the survey exceeds four. Reported
prices in the Monthly Report on the Retail Price Survey are an arithmetic
mean of prices collected at individual outlets. The number of prices collected
in each city ranges from one to forty-two, depending on the characteristics
of the items and the size of the city. This exclusion limits the maximum
number of summand prices to four and, thus, certainly makes our price data
represent the process of price changes at the individual outlets within a survey
district.17

As a consequence of these exclusions, we consider 429 items, covering 60.1
percent of the Japanese CPI in 2000. Table 2 shows the summary statistics.

[Table 2 about here.]

6.2 Results and Discussions

The overall results of the goodness-of-fit test are summarized in Table 3. We
report the results for each group of expenses in the Japanese CPI to find out
how the goodness-of-fit of hypothesized models varies over groups.18

The second column in the table shows the frequency of price changes by
group. The frequency of price changes in a group is calculated as follows: Let
Gq be the qth item group, the frequency in the group is

∑
i∈Gq

wiµ̂i, where
µ̂i is the parameter estimates of the exponential model, which is identical to
the frequency of price changes as we have seen in Section 4, and wi is the ith
item’s CPI weight in 2000, which satisfies

∑429
i=1 wi = 1. The figures clearly

show that the degree of price stickiness differs across item groups, supporting
the finding of many authors including Bils and Klenow (2004).

[Table 3 about here.]

In the exponential model (Model 1), 352 items reject the hypothesis of
exponentiality at the one percent significance level. In the course of cal-
culation, we cannot calculate the test statistic X2

n for 19 items because the
number of complete spells is too small and thereby we cannot form any single
cell. For the rest of the 25 items, which amount to 8.6 percent in weighted

17On these exclusions of items and price spells, we follow Higo and Saita (2007) in most
respects. A slight difference lies in the last exclusion, in which they use the price data of
55 middle-sized cities. In fact, the number of prices collected in those cities is also less
than or equal to four. We include, however, in addition to price data of those middle-sized
cities, price data that are surveyed in large-sized cities, but whose number of collected
prices is less than or equal to four.

18Table 5 in the Appendix shows the test results by item.
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share of nonrejected items, we can conclude that exponentiality holds.19 Ta-
ble 3 shows that most items in the subgroups of Eating out in the Food
sector and Repairs and maintenance in the Housing sector and some items in
the Reading and recreation sector lead to the nonrejection of an exponential
hypothesis.

It is notable that such items have in common a low frequency of price
changes. This fact is clearly illustrated in Figure 1, in which we superpose
the distribution of the parameter estimates of the exponential model for the
items that lead to nonrejection (denoted by the black bar) on the distribution
for all 429 items (gray bar). We can see from Figure 1 that most parameter
values of the well-fitting exponential models distribute in the region up to
0.125, whereas in the higher region they do not, except for one item, Camera,
with the parameter value µ̂=0.288.

[Figure 1 about here.]

The results from the exponentiality test by Shapiro and Wilk (1972) also
verify the evidence. Figure 2 depicts the same parameter distribution as the
previous figure, but the black bars in Figure 2 denote the number of items
that retain the exponentiality in the Shapiro and Wilk (1972) test. The
figure illustrates that the items with the higher value of µ̂ uniformly reject
the hypothesis at the one percent significance level. The maximum of µ̂ for
the items that retain the hypothesis is 0.11, which implies the frequency of
price changes for these items is limited to 11 percent per month.

[Figure 2 about here.]

As for the Hjort (1990) test, we can verify the results using the conceptu-
ally equivalent method that compares the Nelson–Aalen estimate Â(t) with
the parametric cumulative hazard function A(t; θ̂). We choose four items
with a different value of parameter estimate µ̂ in Figure 3: (a) Coffee (eating
out) with µ̂ = 0.054, (b) Babies’ clothes with µ̂ = 0.202, (c) Butter with
µ̂ = 0.399, and (d) Detergent, laundry with µ̂ = 0.604. As we have seen
in the last part of Section 3.2, Coffee (eating out) retains the null of ex-
ponentiality. Panel (a) shows a typical appearance of both plots when the
hypothesis of exponentiality holds. Specifically, the Nelson–Aalen estimate
in Panel (a) fluctuates around the predicted value of the cumulative hazard

19Specifically, we cannot reject the null of exponentiality in 58 (=429–(352+19)) items
but the figure includes 33 items with high price flexibility. In these flexible items, the
test statistic takes a necessarily small value, because the observed and expected number
of price changes is nearly equal in each cell over the interval. This can be understood as a
trivial case in the sense that we cannot reject any assumed parametric models. Thus, we
subtract 33 items from 58 items and report 25 items in Table 3.
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function. We illustrate cases of the rejection in Panels (b)-(d). The predicted
values in these panels fail to capture the shapes of the Nelson-Aalen estimate
especially in the longer duration.

[Figure 3 about here.]

In Table 3, there is a difference in the number of retained items between
the Shapiro and Wilk (1972) test and the Hjort (1990) test for exponential-
ity. One reasonable explanation for the difference is that the power of the
Shapiro–Wilk test against local alternatives is weaker than that of the Hjort
test. To confirm this explanation, we conduct power analysis through Monte
Carlo simulations. In the power analysis, we compare the performance of
both tests for testing the null hypothesis of exponentiality H0, when the true
distribution is Weibull with shape parameter α. As we have shown in Sec-
tion 4, when α < 1 (α > 1), the parametric hazard function slopes downward
(upward) and α = 1 corresponds to H0. Table 4 presents the simulated pow-
ers with 1 percent significance level for the randomly censored samples with
sizes n = 100 and 200, and censoring percentages of 25% and 50%.20 The
simulated powers are computed by generating 1000 replications of samples.
In addition, we examine two cases in which the Hjort (1990) test statistic
includes 5 and 10 cells.

Table 4 shows that assuming the different number of cells in the Hjort
(1990) test does not substantially alter the simulated powers for each samples.
Comparing the powers of the Hjort (1990) test and the Shapiro and Wilk
(1972) test, we find that neither test dominates the other throughout the
chosen range of shape parameter, from 0.5 to 1.5: in the range α < 1, the
Hjort test dominates the Shapiro–Wilk test, whereas in the range α > 1,
it does not. However, the range most relevant to our discussion is α < 1.
This is because too often the Shapiro–Wilk test tends to accept the null of
exponentiality in those items, whose Weibull shape parameter estimate is less
than one, and in which the Hjort test cannot reject the Weibull model.21 For
the 200 samples with 50%-censored simulated data from Weibull distribution
with α = 0.7, for example, the simulated power of the Shapiro–Wilk test is
0.697, which is less than that of the Hjort test by 18 percentage points.
Considering the test results from the Weibull model, as discussed in detail
below, the fact that the Hjort test has relatively high power against Weibull
alternatives with α < 1 may account for the difference in the test results.

20The number of samples and the censoring percentage are chosen so that the simulated
samples adequately represent the item in which the results of the two tests are contradic-
tory: The average number of price spells and the censoring percentage of those items are
183 and 51%, respectively.

21See Figure 4 and Table 5 in the Appendix.

16



[Table 4 about here.]

The Weibull model (Model 2) fits well for 54 items, the weighted share
of which amounts to 14.6 percent. Now the interest lies in the shape pa-
rameter α of the model. If the parameter α exceeds one and the goodness
of fit is plausible, we then conclude that the hazard rate of that item tends
to increase over time. Figure 4 shows, however, there exist no such items in
our dataset. The items that retain the hypothesis that the underlying dis-
tribution is Weibull exhibit a decreasing or constant pattern of hazard rates.
We can find three items suitable for the Weibull fit (denoted in black) in the
region where α exceeds one, but the value of the parameter is nearly equal
to one. Thus, the hazard function of these items does not sharply increase
over time. In fact, the three items above also retain the hypothesis of ex-
ponentiality. When α is close to one, an item that cannot reject a Weibull
hypothesis tends to retain an exponential hypothesis as well, which accounts
for the results in Table 3 that both hypotheses hold in some items in the
group such as Eating out or Repairs and maintenance. The result is highly
predictable because Weibull models encompass exponential models.

[Figure 4 about here.]

Figure 5 illustrates the graphical check for Weibull models. In the same
manner as Figure 2, we show the case of nonrejection in Panel (a), Women’s
haircut charges with µ̂ = 0.058 and α̂ = 0.758, and the cases of rejection in
Panels, (b) Gas with µ̂ = 0.130 and α̂ = 0.998, (c) Microwave ovens with
µ̂ = 0.366 and α̂ = 1.21, and (d) Gasoline (regular) with µ̂ = 0.371 and
α̂ = 1.51. Note that the estimated Weibull hazard function of four items
has different implications as to duration dependence: (a) negative duration
dependence; (b) no duration dependence; and (c)–(d) positive duration de-
pendence. The Weibull model for Women’s haircut charges in Panel (a)
has a concave cumulative hazard function, which means the hazard rates
decrease over time. In Panel (a) we observe that the step function of the
Nelson–Aalen estimate hovers around the cumulative hazard function, while
in Panels (b)–(d) we do not observe the same.

[Figure 5 about here.]

Finally, we discuss the results of the model with unobserved heterogene-
ity. As we have shown in Section 4, if samples are from a heterogeneous
population, the estimated hazard rates decrease over time due to the het-
erogeneity effect. As Higo and Saita (2007) state, even if we estimate the
hazard function by item, the estimates can be affected by the local char-
acteristics of a city or an outlet. That is the reason why we estimate the

17



parametric hazard model with unobserved heterogeneity (Models 3 and 4).
However, the performance of these models is worse than that of the mod-
els without heterogeneity: The weighted share of Models 3 and 4 is even
smaller than those of Models 1 and 2. Most items that retain the hypoth-
esis of a heterogeneous model also retain the hypothesis of a homogeneous
model, and on comparing the numbers of nonrejected items by groups, the
introduction of the gamma-distributed heterogeneity does not additionally
increase the number of items of nonrejection. In view of these results, it is
not easy to attribute the reason for the decreasing hazard estimates simply
to the unobservable characteristics of the survey cities.

7 Concluding remarks

In this paper, we examine the distributional assumptions of price duration
distributions. We use the goodness-of-fit test by Hjort (1990), in which we
compare, on a span-by-span basis, the number of observed price changes and
expected price changes implied by the hypothesized hazard function. For
each of the 429 items available in the Monthly Report on the Retail Price
Survey for 2000–2005, we fit the standard parametric hazard models with or
without unobserved heterogeneity and test the goodness-of-fit.

We establish the following four facts. First, 8.6 percent of the tested
items (in weighted share) cannot reject the hypothesis that the underlying
distribution is exponential, which corresponds to the time-dependent model
of Calvo (1983). Second, most of the items with a high frequency of price
changes reject the hypothesis of exponentiality at the one percent significance
level. This finding is also confirmed by the Shapiro and Wilk (1972) test for
exponentiality. Third, a well-fitting Weibull hazard model has a decreasing
or almost constant hazard function. In our dataset, there is no item that
retains a Weibull hypothesis and that exhibits a sharply increasing hazard
function. Fourth, the introduction of unobserved heterogeneity that is spe-
cific to a survey city does not improve the performance of the model without
unobserved heterogeneity at the item level.
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Figure 1: Distribution of µ̂: The black bar denotes the number of items that
retain the hypothesis of exponentiality. The test statistic is the Hjort (1990)
test of goodness-of-fit. The total number of items is 429. The retail price
data are from Jan 2000–Dec 2005.
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Figure 2: Distribution of µ̂: The black bar denotes the number of items that
retain the hypothesis of exponentiality. The test statistic is the Shapiro–Wilk
(1972) test for Exponentiality. The total number of items is 429. The retail
price data are from Jan 2000–Dec 2005.
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Figure 3: Graphical check for exponentiality: Nelson–Aalen estimate with
95 percent confidence band (step function) and the exponential cumulative
hazard function (straight line). (a) Coffee (eating out) with µ̂ = 0.054, (b)
Babies’ clothes with µ̂ = 0.202, (c) Butter with µ̂ = 0.399, and (d) Detergent,
laundry with µ̂ = 0.604.
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Figure 4: Distribution of α̂: The black bar denotes the number of items that
retain the hypothesis that the underlying distribution is Weibull distribution.
Same data as Figure 1.
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Figure 5: Graphical check for Weibull hazard model: Nelson–Aalen estimate
with 95 percent confidence band (step function) and the Weibull cumulative
hazard function (smooth line). (a) Women’s haircut charges with µ̂ = 0.058
and α̂ = 0.758, (b) Gas with µ̂ = 0.130 and α̂ = 0.998, (c) Microwave ovens
with µ̂ = 0.366 and α̂ = 1.21, and (d) Gasoline (regular) with µ̂ = 0.371 and
α̂ = 1.51.
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Number of Goodness-of-fitDuration
price spells

Cell
test

t Y (t) ∆N(t) ∆C(t) l Nl El Zl

1 231 23 0 1 23 12.5 8.8
2 208 13 3 2 13 11.3 0.3
3 192 14 3 3 14 10.4 1.3
4 175 10 6 4 10 9.5 0.0
5 159 11 1 5 11 8.6 0.7
6 147 5 1 6 5 8.0 1.1
7 141 5 2 7 5 7.6 0.9
8 134 9 3 8 9 7.2 0.4
9 122 5 1 9 5 6.6 0.4
10 116 2 5
11 109 5 4

10 7 12.2 2.2

12 100 5 4 11 5 5.4 0.0
13 91 7 0 12 7 4.9 0.9
14 84 5 1 13 5 4.5 0.0
15 78 2 4
16 72 3 0

14 5 8.1 1.2

17 69 5 1 15 5 3.7 0.4
18 63 1 0
19 62 4 2

16 5 6.8 0.5

20 56 1 7
21 48 3 1
22 44 3 2

17 7 8.0 0.1

23 39 1 0
24 38 5 0

18 6 4.2 0.8

26 33 1 0
27 32 1 0
28 31 5 0

19 7 5.2 0.6

29 26 1 0
30 25 2 1
31 22 3 0

20 6 3.9 1.1

32 19 2 0
33 17 0 1
35 16 1 1
36 14 2 0
37 12 1 1
40 10 1 0

21 8 6.3 0.4

41 9 1 0
44 8 0 1
61 7 0 2
71 5 0 5

Table 1: Goodness-of-fit test for exponentiality: Coffee (eating out). Y (t), the
number of price spells at risk just before t; ∆N(t) the number of price spells
end with a price change at t; ∆C(t), the number of price spells censored at
t; Nl, the observed number of price changes in the lth cell; El, the expected
number of price changes implied by the exponential distribution with hazard
rate θ̂ = 0.054. Zl is defined as (Nl − El)2/El.
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Number of items 429
Number of price records 1,460,823
Number of price spells 477,210

Number of complete spells 450,445
Number of right-censored spells 26,765

Share of right-censored spells 5.6%

Table 2: Retail price data used for the calculation of the Japanese CPI from
Jan 2000–Dec 2005.
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Frequency Hjort (1990) test for goodness-of-fit Shapiro–Wilk (1972)
of price Exponential- Weibull- test for

Number of items

Groups changes
Exponential Weibull

Gamma Gamma exponentiality
tested

Food
Cereals 0.440 0 0 0 0 0 13
Fish & shellfish 0.741 0 0 0 0 0 29
Meat 0.477 0 0 0 0 0 10
Dairy products & eggs 0.477 0 0 0 0 1 8
Vegetables & seaweeds 0.727 0 0 0 0 0 36
Fruits 0.946 0 0 0 0 0 5
Oils, fats & seasonings 0.432 0 0 0 0 1 16
Cakes & candies 0.325 0 0 0 0 0 17
Cooked food 0.333 0 0 0 0 0 14
Beverages 0.338 0 0 0 0 1 14
Alcoholic beverages 0.250 0 0 0 0 0 13
Eating out 0.073 9 12 7 5 12 17

Housing
Repairs & maintenance 0.036 6 9 4 4 9 12

Fuel, Light & Water Charges
Electricity 0.070 0 0 0 0 0 1
Gas 0.112 0 0 0 0 0 4

Furniture & Household Utensils
Household durables 0.464 0 1 0 0 0 15
Interior furnishings 0.227 0 0 0 0 0 5
Bedding 0.261 0 0 0 0 0 4
Domestic utensils 0.154 1 2 0 0 3 15
Domestic non-durables 0.481 0 0 0 0 0 8
Domestic services 0.006 0 0 0 0 1 3

Cloths & Footwear
Japanese clothing 0.088 0 0 0 0 0 2
Clothing 0.256 0 0 0 0 0 4
Shirts & sweaters 0.215 0 0 0 0 0 1
Underwear 0.178 0 0 0 0 0 13
Cloth & thread 0.115 0 0 0 0 0 3
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Frequency Hjort (1990) test for goodness-of-fit Shapiro–Wilk (1972)
of price Exponential- Weibull- test for

Number of items

Groups (continued) changes
Exponential Weibull

Gamma Gamma exponentiality
tested

Other clothing 0.161 0 1 0 0 0 6
Services related to clothing 0.049 0 1 0 0 1 2

Medical Care
Medicines & health fortification 0.098 0 3 0 0 4 11
Medical supplies & appliances 0.252 1 1 2 1 1 9
Medical services 0.008 0 1 0 0 1 5

Transportation & Communication
Public transportation 0.001 0 0 0 0 1 9
Private transportation 0.323 2 4 1 2 7 12
Communication 0.023 0 1 0 1 2 4

Education
Tutorial fees 0.062 0 0 0 0 1 1

Reading & Recreation
Recreational durables 0.516 1 0 1 0 0 5
Recreational goods 0.292 3 7 1 1 6 31
Recreational services 0.075 2 5 1 1 13 19

Miscellaneous
Personal care services 0.026 0 3 0 1 6 7
Toilet articles 0.286 0 1 0 0 1 12
Personal effects 0.165 0 2 0 0 1 9
Other 0.005 0 0 0 0 1 5

Total 0.247 25 54 17 16 74 429
- (8.6) (14.6) (6.1) (5.0) (21.3) -

Table 3: The number of items that retain the hypothesis that the underlying distribution belongs to a specified family of distributions. Entries for groups are
the subgroups of the ten major groups in the Japanese CPI. The frequency of price changes is calculated as

∑
i∈Gq

wiµ̂i, where Gq is the qth item group and wi

is ith item’s CPI weight in 2000 with
∑429

i=1 wi = 1 (µ̂i is defined in the text). The weighted share (in percentage) is in the parentheses in the last row.
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n = 100
25% censored 50% censored

Hjort test Shapiro– Hjort test Shapiro–
α m = 5 m = 10 Wilk test m = 5 m = 10 Wilk test
0.5 1.000 1.000 0.988 1.000 0.998 0.919
0.6 0.982 0.982 0.876 0.908 0.942 0.692
0.7 0.744 0.801 0.586 0.588 0.631 0.355
0.8 0.270 0.344 0.222 0.170 0.251 0.125
0.9 0.056 0.095 0.049 0.033 0.089 0.023
1.0 (H0) 0.009 0.030 0.009 0.019 0.061 0.016
1.1 0.026 0.043 0.030 0.031 0.065 0.021
1.2 0.078 0.108 0.128 0.059 0.098 0.081
1.3 0.182 0.195 0.355 0.123 0.176 0.177
1.4 0.388 0.358 0.622 0.244 0.284 0.353
1.5 0.623 0.585 0.790 0.367 0.415 0.464

n = 200
25% censored 50% censored

Hjort test Shapiro– Hjort test Shapiro–
α m = 5 m = 10 Wilk test m = 5 m = 10 Wilk test
0.5 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 0.995 0.999 0.999 0.960
0.7 0.974 0.979 0.898 0.872 0.879 0.697
0.8 0.559 0.529 0.467 0.349 0.365 0.273
0.9 0.062 0.074 0.081 0.053 0.062 0.060
1.0 (H0) 0.007 0.012 0.007 0.008 0.021 0.008
1.1 0.037 0.032 0.072 0.027 0.039 0.036
1.2 0.179 0.153 0.361 0.086 0.099 0.207
1.3 0.507 0.455 0.716 0.300 0.293 0.486
1.4 0.869 0.781 0.935 0.594 0.539 0.747
1.5 0.977 0.948 0.995 0.836 0.769 0.917

Table 4: Simulated powers of the Hjort (1990) test and the Shapiro and Wilk (1972) test. The
true distribution is Weibull with shape parameter α, and the null hypothesis of exponentiality,
H0, corresponds to α = 1.0. The test size is 0.01. The number of replications is 1000. m
denotes the number of cells in the Hjort (1990) test statistic.
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Appendix

Frequency Hjort (1990) test of goodness-of-fit Shapiro–Wilk
of price Exponential- Weibull- (1972) test for

No. Item changes
Exponential Weibull

Gamma Gamma exponentiality

[Food]

1 Rice A (domestic), “Koshihikari” 0.435 0.000 0.000 0.000 0.000 reject
2 Rice B (domestic), non-blended

rice excluding “Koshihikari”
0.486 0.000 0.000 0.000 0.000 reject

3 Blended rice 0.382 0.000 0.000 0.000 0.000 reject
4 Glutinous rice 0.340 0.000 0.000 0.000 0.000 reject
5 White bread 0.469 0.000 0.000 0.000 0.000 reject
6 Bean-jam buns 0.276 0.000 0.000 0.000 0.000 reject
7 Boiled noodles 0.373 0.000 0.000 0.000 0.000 reject
8 Dried noodles 0.427 0.000 0.000 0.000 0.000 reject
9 Spaghetti 0.519 0.000 0.000 0.000 0.000 reject
10 Instant noodles 0.523 0.000 0.000 0.000 0.000 reject
11 Uncooked Chinese noodles 0.577 0.000 0.000 0.000 0.000 reject
12 Wheat flour 0.482 0.000 0.000 0.000 0.000 reject
13 “Mochi”, rice-cakes 0.411 0.000 0.000 0.000 0.000 reject
14 Tuna fish 0.864 0.000 0.000 0.000 0.000 reject
15 Horse mackerel 0.975 0.999† - - - reject
16 Sardines 0.973 0.975† - - - reject
17 Flounder 0.963 0.145† - - - reject
18 Salmon 0.829 0.000 0.000 0.000 0.000 reject
19 Mackerel 0.955 0.931† - - - reject
20 Saury 0.916 0.088† - - - reject
21 Sea bream 0.899 0.000 0.000 0.000 0.000 reject
22 Yellowtail 0.916 0.000 - - - reject
23 Cuttlefish 0.969 0.984† - - - reject
24 Octopus 0.796 0.000 0.000 0.000 0.000 reject
25 Prawns 0.870 0.000 0.000 0.000 0.000 reject
26 Short-necked clams 0.778 0.000 0.000 0.000 0.000 reject
27 Scallops 0.882 0.000 0.000 0.000 0.000 reject
28 Salted salmon 0.700 0.000 0.000 0.000 0.000 reject
29 Salted cod roe 0.539 0.000 0.000 0.000 0.000 reject
30 “Shirasu-boshi”, dried young sar-

dines
0.636 0.000 0.000 0.000 0.000 reject

31 Dried horse mackerel 0.742 0.000 0.000 0.000 0.000 reject
32 Dried sardines 0.659 0.000 0.000 0.000 0.000 reject
33 “Niboshi”, dried small sardines 0.397 0.000 0.000 0.000 0.000 reject
34 Capelin 0.714 0.000 0.000 0.000 0.000 reject
35 “Agekamaboko”, fried fish-paste

patties
0.521 0.000 0.000 0.000 0.000 reject

36 “Chikuwa”, baked fish-paste bars 0.437 0.000 0.000 0.000 0.000 reject
37 “Kamaboko”, steamed fish-paste

cakes
0.400 0.000 0.000 0.000 0.000 reject

38 Dried bonito fillets 0.279 0.000 0.000 0.000 0.000 reject
39 Pickled fish 0.663 0.000 0.000 0.000 0.000 reject
40 Fish prepared in soy sauce 0.301 0.000 0.000 0.000 0.000 reject
41 Canned fish 0.248 0.000 0.000 0.000 0.000 reject
42 “Shiokara”, salted fish guts 0.261 0.000 0.000 0.000 0.000 reject
43 Beef (loin) 0.516 0.000 0.000 0.000 0.000 reject
44 Beef (shoulder) 0.559 0.000 0.000 0.000 0.000 reject
45 Beef (imported) 0.729 0.000 0.000 0.000 0.000 reject
46 Pork (loin) 0.425 0.000 0.000 0.000 0.000 reject
47 Pork (shoulder) 0.467 0.000 0.000 0.000 0.000 reject
48 Chicken 0.437 0.000 0.000 0.000 0.000 reject
49 Liver 0.268 0.000 0.000 0.000 0.000 reject
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Frequency Hjort (1990) test of goodness-of-fit Shapiro–Wilk
of price Exponential- Weibull- (1972) test for

No. Item changes
Exponential Weibull

Gamma Gamma exponentiality

50 Ham 0.368 0.000 0.000 0.000 0.000 reject
51 Sausages 0.390 0.000 0.000 0.000 0.000 reject
52 Bacon 0.316 0.000 0.000 0.000 0.000 reject
53 Fresh milk (delivered) 0.051 0.000 0.000 0.000 0.000 ∗
54 Fresh milk (sold in stores) 0.364 0.000 0.000 0.000 0.000 reject
55 Powdered milk 0.213 0.000 0.000 0.000 0.000 reject
56 Yogurt 0.656 0.000 0.000 0.000 0.000 reject
57 Butter 0.399 0.000 0.000 0.000 0.000 reject
58 Cheese 0.428 0.000 0.000 0.000 0.000 reject
59 Cheese (imported) 0.130 0.000 0.000 0.000 0.000 reject
60 Hen eggs 0.880 0.179† - - - reject
61 Cabbage 0.989 0.997† - - - reject
62 Spinach 0.998 1.000† - - - reject
63 Chinese cabbage 0.986 0.984† - - - reject
64 Welsh onions 0.992 0.990† - - - reject
65 Lettuce 0.995 0.977† - - - reject
66 Broccoli 0.997 1.000† - - - reject
67 Bean sprouts 0.338 0.000 0.000 0.000 0.000 reject
68 Asparagus 0.976 0.971† - - - reject
69 Sweet potatoes 0.969 0.481† - - - reject
70 White potatoes 0.957 0.451† - - - reject
71 Taros 0.968 0.656† - - - reject
72 Radishes 0.985 0.989† - - - reject
73 Carrots 0.974 0.316† - - - reject
74 Burdocks 0.964 0.011† - - - reject
75 Onions 0.958 0.560† - - - reject
76 Lotus roots 0.972 0.498† - - - reject
77 “Naga-imo” yams 0.921 0.009 - - - reject
78 Tomatoes 0.992 0.991† - - - reject
79 Green peppers 0.961 0.961† - - - reject
80 “Shiitake”, Japanese mushrooms,

fresh
0.961 0.332† - - - reject

81 “Enokidake”, mushrooms 0.916 0.341† - - - reject
82 “Shimeji”, mushrooms 0.940 0.993† - - - reject
83 “Azuki”, red beans 0.313 0.000 0.000 0.000 0.000 reject
84 “Shiitake”, Japanese mushrooms,

dried
0.266 0.000 0.000 0.000 0.000 reject

85 Laver 0.417 0.000 0.000 0.000 0.000 reject
86 “Wakame”, seaweed 0.349 0.000 0.000 0.000 0.000 reject
87 Dried tangle 0.436 0.000 0.000 0.000 0.000 reject
88 Bean curd 0.297 0.000 0.000 0.000 0.000 reject
89 Fried bean curd 0.405 0.000 0.000 0.000 0.000 reject
90 “Natto”, fermented soybeans 0.499 0.000 0.000 0.000 0.000 reject
91 “Konnyaku”, devil’s-tongue jelly 0.374 0.000 0.000 0.000 0.000 reject
92 “Umeboshi”, pickled plums 0.418 0.000 0.000 0.000 0.000 reject
93 Pickled radishes 0.476 0.000 0.000 0.000 0.000 reject
94 Pickled Chinese cabbage 0.603 0.000 0.000 0.000 0.000 reject
95 Sliced vegetables pickled in soy

sauce
0.415 0.000 0.000 0.000 0.000 reject

96 Tangle prepared in soy sauce 0.491 0.000 0.000 0.000 0.000 reject
97 Grapefruits 0.953 0.592† - - - reject
98 Oranges 0.952 0.955† - - - reject
99 Lemons 0.960 0.785† - - - reject
100 Bananas 0.938 0.107† - - - reject
101 Kiwi fruits 0.951 0.431† - - - reject
102 Edible oil 0.486 0.000 0.000 0.000 0.000 reject
103 Margarine 0.424 0.000 0.000 0.000 0.000 reject
104 Salt 0.020 0.000 0.001 0.000 0.000 ∗
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No. Item changes
Exponential Weibull

Gamma Gamma exponentiality

105 Soy sauce 0.381 0.000 0.000 0.000 0.000 reject
106 Soybean paste 0.436 0.000 0.000 0.000 0.000 reject
107 Sugar 0.434 0.000 0.000 0.000 0.000 reject
108 Vinegar 0.240 0.000 0.000 0.000 0.000 reject
109 Worcester sauce 0.359 0.000 0.000 0.000 0.000 reject
110 Ketchup 0.498 0.000 0.000 0.000 0.000 reject
111 Mayonnaise 0.400 0.000 0.000 0.000 0.000 reject
112 Jam 0.497 0.000 0.000 0.000 0.000 reject
113 Instant curry mix 0.537 0.000 0.000 0.000 0.000 reject
114 Instant dried soup 0.429 0.000 0.000 0.000 0.000 reject
115 Flavor seasonings 0.492 0.000 0.000 0.000 0.000 reject
116 “Furikake”, granular flavor sea-

sonings
0.493 0.000 0.000 0.000 0.000 reject

117 Liquid seasonings 0.453 0.000 0.000 0.000 0.000 reject
118 “Yokan”, sweet bean jelly 0.061 0.000 0.007 0.000 0.000 reject
119 “Manju”, bean-jam cakes 0.254 0.000 0.000 0.000 0.000 reject
120 “Daifukumochi”, rice cakes

stuffed with sweetened bean jam
0.214 0.000 0.000 0.000 0.000 reject

121 “Kasutera”, sponge cakes 0.118 0.000 0.000 0.000 0.000 reject
122 Cakes 0.208 0.000 0.000 0.000 0.000 reject
123 Jelly 0.434 0.000 0.000 0.000 0.000 reject
124 Pudding 0.477 0.000 0.000 0.000 0.000 reject
125 Cream puffs 0.218 0.000 0.000 0.000 0.000 reject
126 “Sembei”, Japanese rice crackers 0.524 0.000 0.000 0.000 0.000 reject
127 “Sembei”, Japanese wheat crack-

ers
0.377 0.000 0.000 0.000 0.000 reject

128 Biscuits 0.660 0.000 0.000 0.000 0.000 reject
129 Potato chips 0.596 0.000 0.000 0.000 0.000 reject
130 Candies 0.550 0.000 0.000 0.000 0.000 reject
131 Chocolate 0.349 0.000 0.000 0.000 0.000 reject
132 Ice cream 0.227 0.000 0.000 0.000 0.000 reject
133 Peanuts 0.370 0.000 0.000 0.000 0.000 reject
134 Chewing gum 0.072 0.000 0.000 0.000 0.000 reject
135 Box lunch 0.096 0.000 0.000 0.000 0.000 reject
136 Rice balls 0.167 0.000 0.000 0.000 0.000 reject
137 Bread like sandwiches put cooked

food between bread
0.394 0.000 0.000 0.000 0.000 reject

138 Frozen pilaf 0.493 0.000 0.000 0.000 0.000 reject
139 “Kabayaki”, broiled eels 0.632 0.000 0.000 0.000 0.000 reject
140 Salad 0.433 0.000 0.000 0.000 0.000 reject
141 Croquettes 0.339 0.000 0.000 0.000 0.000 reject
142 Cutlets 0.228 0.000 0.000 0.000 0.000 reject
143 Fried chicken 0.471 0.000 0.000 0.000 0.000 reject
144 Ch(i)aotzu 0.467 0.000 0.000 0.000 0.000 reject
145 Frozen croquettes 0.439 0.000 0.000 0.000 0.000 reject
146 Cooked curry 0.436 0.000 0.000 0.000 0.000 reject
147 “Mazegohan no moto”, prepared

materials to boiled rice with as-
sorted ingredients

0.440 0.000 0.000 0.000 0.000 reject

148 Boiled beans 0.458 0.000 0.000 0.000 0.000 reject
149 Green tea (“Bancha”) 0.261 0.000 0.000 0.000 0.000 reject
150 Green tea (“Sencha”) 0.316 0.000 0.000 0.000 0.000 reject
151 Black tea 0.339 0.000 0.000 0.000 0.000 reject
152 Instant coffee 0.409 0.000 0.000 0.000 0.000 reject
153 Coffee beans 0.465 0.000 0.000 0.000 0.000 reject
154 Coffee beverages 0.317 0.000 0.000 0.000 0.000 reject
155 Fruit juice 0.509 0.000 0.000 0.000 0.000 reject
156 Beverages which contains juice 0.271 0.000 0.000 0.000 0.000 reject
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Frequency Hjort (1990) test of goodness-of-fit Shapiro–Wilk
of price Exponential- Weibull- (1972) test for

No. Item changes
Exponential Weibull

Gamma Gamma exponentiality

157 Vegetable juice 0.347 0.000 0.000 0.000 0.000 reject
158 Carbonated beverages 0.281 0.000 0.000 0.000 0.000 reject
159 Fermented lactic drinks, unsteril-

ized (“Calpis”)
0.430 0.000 0.000 0.000 0.000 reject

160 Fermented lactic drinks, unsteril-
ized (“Yakult”)

0.001 - - - - ∗

161 Sports soft drinks 0.439 0.000 0.000 0.000 0.000 reject
162 Mineral water 0.523 0.000 0.000 0.000 0.000 reject
163 “Sake A” (finest quality) 0.118 0.000 0.000 0.000 0.000 reject
164 “Sake B” (high quality) 0.167 0.000 0.000 0.000 0.000 reject
165 “Sake C” (medium quality) 0.287 0.000 0.000 0.000 0.000 reject
166 “Shochu”, distilled spirits 0.116 0.000 0.000 0.000 0.000 reject
167 Beer 0.286 0.000 0.000 0.000 0.000 reject
168 Beer (imported) 0.160 0.000 0.000 0.000 0.000 reject
169 Low-malt beer 0.331 0.000 0.000 0.000 0.000 reject
170 Whisky (imported) 0.300 0.000 0.000 0.000 0.000 reject
171 Whisky (43% vol. and over) 0.168 0.000 0.000 0.000 0.000 reject
172 Whisky (40% or more, but less

than 43% vo1.)
0.300 0.000 0.000 0.000 0.000 reject

173 Whisky (38% or more, but less
than 40% vo1.)

0.139 0.000 0.000 0.000 0.000 reject

174 Wine 0.246 0.000 0.000 0.000 0.000 reject
175 Wine (imported) 0.177 0.000 0.000 0.000 0.000 reject
176 Japanese noodles (eating out) 0.045 0.048∗ 0.307∗ 0.007 0.011∗ ∗
177 Chinese noodles 0.047 0.000 0.064∗ 0.000 0.000 ∗
178 Spaghetti (eating out) 0.085 0.257∗ 0.320∗ 0.093∗ 0.061∗ ∗
179 “Nigiri-zushi”, hand-rolled

“Sushi”
0.072 0.000 0.008 0.000 0.000 reject

180 “Norimaki”,“Sushi” rolled in
laver

0.075 0.004 0.009 0.000 0.000 ∗

181 Chicken & eggs on rice 0.047 0.001 0.185∗ 0.000 0.004 ∗
182 “Tendon”, prawns “Tempura” on

rice
0.063 0.000 0.000 0.000 0.000 ∗

183 Curry & rice 0.064 0.107∗ 0.172∗ 0.038∗ 0.004 ∗
184 Bowl of rice topped with seasoned

beef
0.136 0.000 0.000 0.000 0.000 reject

185 Ch(i)aotzu (eating out) 0.062 0.014∗ 0.059∗ 0.002 0.001 ∗
186 Hamburg steaks 0.102 0.059∗ 0.135∗ 0.010∗ 0.002 reject
187 Fried prawns 0.076 0.192∗ 0.282∗ 0.052∗ 0.028∗ ∗
188 Lunch for children 0.082 0.029∗ 0.030∗ 0.027∗ 0.016∗ ∗
189 Hamburgers 0.142 0.000 0.000 0.000 0.000 reject
190 Sandwiches 0.080 0.068∗ 0.219∗ 0.033∗ 0.048∗ ∗
191 Pizza 0.061 0.000 0.185∗ 0.000 0.000 reject
192 Coffee (eating out) 0.054 0.320∗ 0.551∗ 0.025∗ 0.007 ∗

[Housing]

193 Bathtubs 0.037 0.000 0.002 0.000 0.002 ∗
194 Toilet seat with a hot douche 0.293 0.000 0.000 0.000 0.000 reject
195 Hot-water supply equipment 0.047 0.171∗ 0.582∗ 0.186∗ 0.582∗ ∗
196 Board 0.061 0.149∗ 0.265∗ 0.133∗ 0.116∗ ∗
197 Paint 0.072 0.000 0.045∗ 0.000 0.001 reject
198 “Tatami” reupholstering 0.042 0.000 0.062∗ 0.000 0.000 ∗
199 Plastering 0.029 0.021∗ 0.056∗ 0.002 0.002 ∗
200 Gardening 0.029 0.010∗ 0.027∗ 0.012∗ 0.010∗ ∗
201 Sheet glass replacement 0.031 0.000 0.259∗ 0.000 0.004 ∗
202 “Fusuma”, sliding doors reuphol-

stering
0.017 0.856∗ 0.902∗ 0.890∗ 0.875∗ ∗
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Frequency Hjort (1990) test of goodness-of-fit Shapiro–Wilk
of price Exponential- Weibull- (1972) test for

No. Item changes
Exponential Weibull

Gamma Gamma exponentiality

203 Carpentering 0.024 0.012∗ 0.026∗ 0.002 0.001 ∗

[Fuel, Light & Water Charge]

204 Fire insurance premium 0.000 - - - - -
205 Electricity 0.070 0.000 0.000 0.000 0.000 reject
206 Gas 0.130 0.000 0.000 0.000 0.000 reject
207 Kerosene 0.425 0.000 0.000 0.000 0.000 reject
208 Water charges 0.005 0.000 0.000 0.000 0.000 reject
209 Sewerage charges 0.010 0.000 0.000 0.000 0.000 reject

[Furniture & Household Utensils]

210 Microwave ovens 0.464 0.000 0.000 0.000 0.000 reject
211 Electric rice-cookers 0.553 0.000 0.000 0.000 0.000 reject
212 Electric pots 0.471 0.000 0.000 0.000 0.000 reject
213 Gas cooking tables 0.248 0.000 0.000 0.000 0.000 reject
214 Gas water heaters 0.152 0.000 0.000 0.000 0.000 reject
215 Refrigerators 0.683 0.000 0.000 0.000 0.000 reject
216 Vacuum cleaners 0.571 0.000 0.000 0.000 0.000 reject
217 Washing machines 0.635 0.000 0.000 0.000 0.000 reject
218 Sewing machines 0.115 0.001 0.014∗ 0.000 0.000 reject
219 Electric irons 0.472 0.000 0.000 0.000 0.000 reject
220 Room air conditioners 0.537 0.000 0.000 0.000 0.000 reject
221 Chests of drawers 0.208 0.000 0.000 0.000 0.000 reject
222 Wardrobes 0.188 0.000 0.000 0.000 0.000 reject
223 Sitting tables 0.193 0.000 0.000 0.000 0.000 reject
224 Kitchen cabinets 0.195 0.000 0.000 0.000 0.000 reject
225 Clocks 0.107 0.000 0.000 0.000 0.000 reject
226 Lighting apparatus 0.233 0.000 0.000 0.000 0.000 reject
227 Carpets 0.253 0.000 0.000 0.000 0.000 reject
228 “Goza”, rush floor coverings 0.196 0.000 0.000 0.000 0.000 reject
229 Curtains 0.226 0.000 0.000 0.000 0.000 reject
230 Beds 0.144 0.000 0.000 0.000 0.000 reject
231 Quilts 0.332 0.000 0.000 0.000 0.000 reject
232 Sheets 0.176 0.000 0.000 0.000 0.000 reject
233 Quilt covers 0.204 0.000 0.000 0.000 0.000 reject
234 Rice bowls 0.148 0.000 0.000 0.000 0.000 reject
235 Dishes 0.183 0.000 0.000 0.000 0.000 reject
236 Coffee cups & saucers 0.137 0.000 0.000 0.000 0.000 reject
237 Glasses 0.184 0.000 0.000 0.000 0.000 reject
238 Wine glasses 0.101 0.000 0.000 0.000 0.000 ∗
239 Sealed kitchenware 0.232 0.000 0.000 0.000 0.000 reject
240 Pans 0.160 0.000 0.000 0.000 0.000 reject
241 Pans (imported) 0.018 0.000 0.116∗ 0.000 0.000 ∗
242 Kettles 0.155 0.000 0.000 0.000 0.000 reject
243 Scrubbing brushes 0.303 0.000 0.000 0.000 0.000 reject
244 Shelves for microwave oven 0.134 0.000 0.000 0.000 0.000 reject
245 Fluorescent lamps 0.098 0.000 0.000 0.000 0.000 reject
246 Towels 0.140 0.000 0.000 0.000 0.000 reject
247 Vinyl hose 0.063 0.018∗ 0.274∗ 0.000 0.000 ∗
248 Clean water equipment 0.233 0.000 0.000 0.000 0.000 reject
249 Rolled toilet paper 0.459 0.000 0.000 0.000 0.000 reject
250 Liquid detergent, kitchen 0.571 0.000 0.000 0.000 0.000 reject
251 Detergent, laundry 0.604 0.000 0.000 0.000 0.000 reject
252 Food wrap 0.502 0.000 0.000 0.000 0.000 reject
253 Insecticide 0.209 0.000 0.000 0.000 0.000 reject
254 Moth repellent for clothes 0.393 0.000 0.000 0.000 0.000 reject
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255 Fabric softener 0.611 0.000 0.000 0.000 0.000 reject
256 Fragrance 0.241 0.000 0.000 0.000 0.000 reject
257 Domestic help 0.010 0.000 0.000 0.000 0.000 reject
258 Charges for treatment of human

waste
0.007 0.000 0.000 0.000 0.000 ∗

259 Charges for mop-rental 0.001 - - - - -

[Clothes & Footwear]

260 Women’s “Kimono” 0.092 0.000 0.002 0.000 0.000 reject
261 Women’s “Obi” 0.078 0.000 0.002 0.000 0.000 reject
262 Men’s slacks (jeans) 0.149 0.000 0.000 0.000 0.000 reject
263 Women’s slacks (jeans) 0.162 0.000 0.000 0.000 0.000 reject
264 Boys’ short pants 0.484 0.000 0.000 0.000 0.000 reject
265 Babies’ clothes 0.203 0.000 0.000 0.000 0.000 reject
266 Men’s business shirts (long

sleeves)
0.215 0.000 0.000 0.000 0.000 reject

267 Men’s undershirts (short sleeves) 0.125 0.000 0.000 0.000 0.000 reject
268 Men’s briefs 0.120 0.000 0.000 0.000 0.000 reject
269 Brassieres 0.178 0.000 0.000 0.000 0.000 reject
270 Panties 0.076 0.000 0.000 0.000 0.000 reject
271 Slips 0.175 0.000 0.000 0.000 0.000 reject
272 Children’s undershirts 0.217 0.000 0.000 0.000 0.000 reject
273 Men’s shoes 0.177 0.000 0.000 0.000 0.000 reject
274 Women’s shoes 0.225 0.000 0.000 0.000 0.000 reject
275 Children’s shoes 0.186 0.000 0.000 0.000 0.000 reject
276 Canvas shoes (for adults) 0.144 0.000 0.000 0.000 0.000 reject
277 Canvas shoes (for children) 0.201 0.000 0.000 0.000 0.000 reject
278 Sandals 0.220 0.000 0.000 0.000 0.000 reject
279 “Zori”, Japanese sandals 0.139 0.000 0.000 0.000 0.000 reject
280 Women’s dress materials 0.159 0.000 0.000 0.000 0.000 reject
281 Men’s suit materials 0.079 0.000 0.000 0.000 0.000 reject
282 Woolen yarn 0.101 0.000 0.000 0.000 0.000 reject
283 Hats & caps 0.049 0.000 0.050∗ 0.000 - reject
284 Neckties 0.314 0.000 0.000 0.000 0.000 reject
285 Neckties (imported) 0.250 0.000 0.000 0.000 0.000 reject
286 Women’s stockings 0.084 0.000 0.000 0.000 0.000 reject
287 Women’s socks 0.227 0.000 0.000 0.000 0.000 reject
288 Belts 0.134 0.000 0.001 0.000 0.000 reject
289 Tailoring charges 0.041 0.000 0.005 0.000 0.000 reject
290 Laundry charges (men’s business

shirts)
0.050 0.000 0.174∗ 0.000 0.000 ∗

[Medical Care]

291 Medicines for cold 0.126 0.000 0.000 0.000 0.000 reject
292 Antipyretic & analgesic

medicines
0.087 0.000 0.001 0.000 0.000 reject

293 Gastrointestinal medicines 0.158 0.000 0.000 0.000 0.000 reject
294 Vitamins-A 0.102 0.000 0.000 0.000 0.000 reject
295 Vitamins-B 0.066 0.000 0.016∗ 0.000 0.000 reject
296 Health drinks 0.060 0.000 0.006 0.000 0.000 ∗
297 Dermal medicines 0.065 0.000 0.046∗ 0.000 0.000 ∗
298 Plasters 0.070 0.005 0.003 0.000 0.000 ∗
299 Eyewashes 0.184 0.000 0.000 0.000 0.000 reject
300 Breath fresheners 0.051 0.000 0.183∗ 0.000 0.000 ∗
301 Chinese medicines 0.109 0.000 0.000 0.000 0.000 reject
302 Disposable diapers 0.607 0.007 0.000 0.032∗ 0.000 reject
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303 Sanitary napkins 0.550 0.000 0.000 0.000 0.000 reject
304 Bath preparation 0.414 0.000 0.000 0.000 0.000 reject
305 Contact lenses cleaning solution 0.112 0.000 0.002 0.000 0.000 reject
306 Spectacles 0.066 0.000 0.008 0.000 0.000 reject
307 Contact lenses 0.076 0.278∗ 0.339∗ 0.291∗ 0.123∗ ∗
308 Bathroom scales 0.262 0.000 0.000 0.000 0.000 reject
309 Thermometers 0.058 0.000 0.000 0.000 0.000 reject
310 Sphygmomanometers 0.293 0.000 0.000 0.000 0.000 reject
311 Medical treatment 0.000 - - - - -
312 Delivery fees in national hospital 0.070 0.000 0.000 0.000 0.000 reject
313 Delivery fees in public hospital 0.051 0.000 0.000 0.000 0.000 reject
314 Charges for massage 0.016 0.000 0.039∗ 0.000 0.000 ∗
315 Fees for complete medical

checkup
0.019 0.000 0.000 0.000 0.000 reject

[Transportation & Communication]

316 Railway fares (ordinary fares, ex-
cluding “Shinkansen”)

0.000 - - - - -

317 Railway fares (special fares, ex-
cluding “Shinkansen”)

0.000 - - - - -

318 Railway fares (students’ season
tickets)

0.000 - - - - -

319 Railway fares (commuters’ season
tickets)

0.000 - - - - -

320 Railway fares (ordinary passen-
gers)

0.001 - - - - reject

321 Railway fares (students’ season
tickets)

0.000 - - - - -

322 Railway fares (commuters’ season
tickets)

0.001 - - - - -

323 Bus fares 0.003 - - - - ∗
324 Taxi fares 0.000 - - - - -
325 Bicycles 0.141 0.000 0.000 0.000 0.000 reject
326 Gasoline (regular) 0.583 0.000 0.000 0.000 0.000 reject
327 Gasoline (premium) 0.579 0.000 0.000 0.000 0.000 reject
328 Tires 0.077 0.000 0.000 0.000 0.000 ∗
329 Car wax 0.106 0.000 0.002 0.000 0.000 reject
330 Regular inspection 0.021 0.000 0.009 0.001 0.006 ∗
331 Muffler replacement 0.021 0.000 0.004 0.000 0.000 ∗
332 Puncture repairs 0.019 0.006 0.046∗ 0.008 0.046∗ ∗
333 Motor oil replacement 0.040 0.013∗ 0.235∗ 0.000 0.000 ∗
334 Charges for garage rental 0.026 0.391∗ 0.699∗ 0.068∗ 0.043∗ ∗
335 Charges for parking 0.014 0.000 0.107∗ 0.001 0.005 ∗
336 Charges for driving license 0.015 0.000 - - - reject
337 Telephone charges 0.001 - - - - -
338 Mobile telephone charges 0.007 0.000 0.000 0.000 0.000 ∗
339 Forwarding charges 0.020 0.004 0.220∗ 0.006 0.220∗ ∗
340 Communication equipments 0.604 0.000 0.000 0.000 0.000 reject

[Education]

341 Tutorial fees 0.062 0.000 0.000 0.000 0.000 ∗

[Reading & Recreation]

342 TV sets 0.568 0.000 0.000 0.000 0.000 reject
343 Stereo phonograph sets 0.548 0.000 0.000 0.000 0.000 reject

37



Frequency Hjort (1990) test of goodness-of-fit Shapiro–Wilk
of price Exponential- Weibull- (1972) test for

No. Item changes
Exponential Weibull

Gamma Gamma exponentiality

344 Mobile audio equipment 0.596 0.000 0.000 0.000 0.000 reject
345 Video tape recorders 0.544 0.000 0.000 0.000 0.000 reject
346 Cameras 0.288 0.133∗ 0.000 0.250∗ 0.000 reject
347 Ball-point pens 0.036 0.057∗ 0.334∗ 0.052∗ 0.072∗ ∗
348 Pencils 0.061 0.000 0.000 0.000 0.000 reject
349 Marking pens 0.023 0.000 0.083∗ 0.000 0.000 ∗
350 Notebooks 0.069 0.000 0.000 0.000 0.000 reject
351 Albums 0.047 0.042∗ 0.067∗ 0.002 0.001 ∗
352 Papers for office automation 0.092 0.000 0.000 0.000 0.000 reject
353 Cellophane adhesive tape 0.034 0.000 0.050∗ 0.000 0.000 ∗
354 Pencil cases 0.110 0.000 0.000 0.000 0.000 reject
355 Golf clubs 0.104 0.000 0.000 0.000 0.000 reject
356 Soccer balls 0.136 0.000 0.003 0.000 0.000 reject
357 Baseball gloves 0.156 0.000 0.000 0.000 0.000 reject
358 Tennis rackets 0.079 0.000 0.043∗ 0.000 0.000 reject
359 Tennis rackets (imported) 0.186 0.000 0.000 0.000 0.000 reject
360 Fishing rods 0.137 0.000 0.000 0.000 0.000 reject
361 Pants for exercise 0.197 0.000 0.000 0.000 0.000 reject
362 Swimming suits 0.182 0.000 0.000 0.000 0.000 reject
363 Video games, hardware 0.320 0.000 0.000 0.000 0.000 reject
364 Dolls 0.046 0.000 0.000 0.000 0.000 ∗
365 Toy cars 0.038 0.000 0.046∗ 0.000 0.000 ∗
366 Building blocks 0.122 0.000 0.000 0.000 0.000 reject
367 Cut flowers (Carnations) 0.885 0.009 0.000 0.009 0.000 reject
368 Cut flowers (Chrysanthemums) 0.903 0.605† - - - reject
369 Cut flowers (Roses) 0.899 0.006 0.000 0.006 0.000 reject
370 Films 0.102 0.014∗ 0.001 0.003 0.000 reject
371 Media for audio recording 0.162 0.000 0.000 0.000 0.000 reject
372 Video tapes 0.236 0.000 0.000 0.000 0.000 reject
373 Pet foods (dog foods) 0.409 0.000 0.000 0.000 0.000 reject
374 Pet foods (cat foods) 0.273 0.000 0.000 0.000 0.000 reject
375 Flowerpots 0.074 0.000 0.014∗ 0.000 0.000 reject
376 Gardening earth 0.175 0.000 0.000 0.000 0.000 reject
377 Dry batteries 0.118 0.000 0.000 0.000 0.000 reject
378 Lesson fees (English conversation

school)
0.052 0.000 0.000 0.000 0.000 ∗

379 Lesson fees (calligraphy school) 0.018 0.000 0.045∗ 0.000 0.001 ∗
380 Lesson fees (music school) 0.023 0.000 0.001 0.000 0.000 ∗
381 Lesson fees (swimming school) 0.018 0.000 0.000 0.000 0.000 ∗
382 Lesson fees (dressmaking school) 0.021 0.000 0.000 0.000 0.000 reject
383 Lesson fees (cooking school) 0.030 0.012∗ 0.057∗ 0.001 0.001 ∗
384 Lesson fees, driving school 0.062 0.000 0.000 0.000 0.000 ∗
385 Admission, movies 0.018 0.000 0.000 0.000 0.000 reject
386 Charges for practicing golf 0.026 0.000 0.000 0.000 0.000 ∗
387 Charges for playing golf 0.255 0.000 0.000 0.000 0.000 reject
388 Tennis court charges 0.081 0.000 0.000 0.000 0.000 reject
389 Game charges, bowling 0.004 0.000 0.011∗ 0.000 0.000 ∗
390 Swimming pool charges 0.078 0.000 0.000 0.000 0.000 ∗
391 Admission fees to the art museum 0.250 0.000 0.000 0.000 0.000 reject
392 Game charges, mahjong 0.017 0.000 0.189∗ 0.000 0.000 ∗
393 “karaoke room” charges 0.106 0.316∗ 0.091∗ 0.241∗ 0.038∗ ∗
394 Photo processing charges 0.051 0.000 0.000 0.000 0.000 ∗
395 Charges for video rental 0.099 0.000 0.001 0.000 0.000 reject
396 Veterinary surgeon fees 0.015 0.000 0.000 0.000 0.000 ∗

[Miscellaneous]

397 Bathing charges (adults) 0.003 0.000 0.001 0.000 0.000 ∗
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398 Bathing charges (children, 6–11
years)

0.001 - - - - ∗

399 Bathing charges (children, under
6 years)

0.000 - - - - -

400 Men’s haircut charges 0.020 0.001 0.072∗ 0.002 0.002 ∗
401 Permanent wave charges 0.039 0.000 0.000 0.000 0.000 ∗
402 Women’s haircut charges 0.026 0.007 0.318∗ 0.008 0.088∗ ∗
403 Hair dyeing charges 0.030 0.001 0.106∗ 0.000 0.000 ∗
404 Electric shavers 0.412 0.000 0.000 0.000 0.000 reject
405 Electric shavers (imported) 0.358 0.000 0.000 0.000 0.000 reject
406 Toothbrushes 0.376 0.000 0.000 0.000 0.000 reject
407 Toilet soap 0.386 0.000 0.000 0.000 0.000 reject
408 Shampoo 0.412 0.000 0.000 0.000 0.000 reject
409 Hair rinse 0.342 0.000 0.000 0.000 0.000 reject
410 Toothpaste 0.453 0.000 0.000 0.000 0.000 reject
411 Hair liquid 0.170 0.000 0.000 0.000 0.000 reject
412 Hair tonic 0.154 0.000 0.000 0.000 0.000 reject
413 Face cream-B 0.070 0.000 0.016∗ 0.000 0.000 ∗
414 Toilet lotion 0.197 0.000 0.000 0.000 0.000 reject
415 Hair Dyeing 0.347 0.000 0.000 0.000 0.000 reject
416 Handbags 0.231 0.000 0.000 0.000 0.000 reject
417 Handbags (imported) 0.223 0.000 0.000 0.000 0.000 reject
418 Suitcases 0.183 0.000 0.000 0.000 0.000 reject
419 Rings 0.077 0.000 0.209∗ 0.000 0.000 reject
420 Wrist watches 0.070 0.000 0.000 0.000 0.000 reject
421 Wrist watches (imported) 0.113 0.000 0.000 0.000 0.000 reject
422 Repair charges of wrist watches 0.013 0.000 0.040∗ 0.000 0.000 ∗
423 Men’s umbrellas 0.181 0.000 0.000 0.000 0.000 reject
424 Handkerchiefs 0.041 0.000 0.001 0.000 0.000 reject
425 Nursery school fees 0.006 0.000 0.000 0.000 0.000 ∗
426 Charges for certificates of regis-

tered stamps
0.000 - - - - -

427 Charges for certificates of perma-
nent registration

0.000 - - - - -

428 Charges for acquisition of pass-
port

0.000 - - - - -

429 Day service fees of nursing care
for the aged

0.019 0.000 0.000 0.000 0.000 reject

Table 5: Goodness-of-fit test results by item. Entries are the 429 items in the Japanese CPI for 2000–2005. P–values
are reported for the Hjort (1990) test of goodness-of-fit. †, the Hjort (1990) test cannot reject the hypothesis due to
the high price flexibility (see also Footnote 19 in the text); ∗, the item cannot reject the hypothesis that the underlying
distribution belongs to a specified family of distributions. “reject” in the last column means the Shapiro and Wilk
(1972) test rejects the null hypothesis of exponentiality at the one percent significance level.
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