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Abstract

We investigate the cross-sectional distribution of house prices in the Greater Tokyo
Area for the period 1986 to 2009. We find that size-adjusted house prices follow a
lognormal distribution except for the period of the housing bubble and its collapse
in Tokyo, for which the price distribution has a substantially heavier upper tail than
that of a lognormal distribution. We also find that, during the bubble era, sharp price
movements were concentrated in particular areas, and this spatial heterogeneity is
the source of the fat upper tail. These findings suggest that, during a bubble, prices
increase markedly for certain properties but to a much lesser extent for other properties,
leading to an increase in price inequality across properties. In other words, the defining
property of real estate bubbles is not the rapid price hike itself but an increase in price
dispersion. We argue that the shape of cross-sectional house price distributions may
contain information useful for the detection of housing bubbles.
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1 Introduction

Property market developments are of increasing importance to practitioners and policy-

makers. The financial crises of the past two decades have illustrated just how critical the

health of this sector can be for achieving financial stability. For example, the recent finan-

cial crisis in the United States in its early stages reared its head in the form of the subprime

loan problem. Similarly, the financial crises in Japan and Scandinavia in the 1990s were

all triggered by the collapse of bubbles in the real estate market. More recently, the rapid

rise in real estate prices - often supported by a strong expansion in bank lending - in a

number of emerging market economies has become a concern for policymakers. Given these

experiences, it is critically important to analyze the relationship between property markets,

finance, and financial crisis.

One of the most urgent tasks in this respect is the development of methods to detect

bubbles in property markets, which is key to making reliable forecasts about future financial

crises and/or to mitigating them. Consider the case of residential properties. In real estate

economics, the fundamental value of a house is determined as the present discounted value

of current and future income flows resulting from renting the house to someone (see, for

example, Himmelberg et al. 2005). Normally, house prices remain close to their fundamental

value due to price arbitrage. However, in some cases, arbitrage forces are not present and

prices deviate substantially from their fundamental value. This is what is called a housing

bubble (see, for example, Martin and Ventura 2018). To detect housing bubbles defined

in this way requires reliable estimates of the fundamental value of house prices, which

in turn requires knowing market participants’ expectations of rental prices in the coming

years. However, such expectations are not observable, so that the fundamental value of

house prices is quite difficult to estimate. Thus, it is next to impossible for researchers or

policymakers to tell, when they observe a price hike, whether this is the result of a rise in

fundamental values or something else.

In this study, we propose an alternative approach to detecting real estate bubbles.

Specifically, we propose making use of information on the cross-sectional dispersion of

real estate prices. It is often believed that all prices rise equally during a bubble period.

However, this is not the case. What happens instead is that there are pronounced price

rises for certain properties but not for others, so that price inequality across properties

increases during a bubble. In other words, the defining characteristic of real estate bubbles
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is not the rapid price hike itself but an increase in price dispersion.

Given these considerations, the present study addresses the following empirical issues.

First, we examine whether the price distribution is close to a normal distribution, as is often

assumed in empirical studies on house price indexes, or whether it has fatter tails than a

Gaussian distribution. Second, we investigate how the shape of the price distribution is

affected by house attributes, including the size and location of a house. Third, we consider

how the shape of the distribution changes over time. In order to examine these three issues,

we focus on the housing bubble Japan experienced in the late 1980s and its burst in the

early 1990s.

This study is closely related to recent research on the cross-sectional distribution of

house prices, including the studies by McMillen (2008), Van Nieuwerburgh andWeill (2010),

Määttänen and Terviö (2014), Glaeser et al. (2012), Gyourko et al. (2013), and Blackwell

(2018). The main interest of Gyourko et al. (2013), Van Nieuwerburgh and Weill (2010),

and Määttänen and Terviö (2014) is the relationship between the house price distribution

and the income distribution. For example, Määttänen and Terviö (2014) ask whether the

recent increases in income inequality in the United States have had any impact on the

distribution of house prices. On the other hand, McMillen (2008) focuses on the change in

the house price distribution over time and asks whether the change in the price distribution

comes from a change in the distribution of house characteristics such as size, location, age,

and so on, or from a change in the implicit prices associated with those characteristics.

The focus of our paper is closely related to the issues discussed in these studies but differs

from them in some important respects. First, this study is the first attempt to specify

the shape of the house price distribution, paying particular attention to the tail part of

the distribution. Second, this study examines the effect of a housing bubble on the cross-

sectional price distribution. While steep increases in the mean of house prices in various

countries in recent decades have received substantial attention in the literature, the change

in the shape of the cross-sectional price distribution has received much less attention.1 In

this study, we seek to fill this gap.

1Some of the recent studies, including Ferreira and Gyourko (2012, 2017), Sinai (2013), and Zhang
(2018), focus on the higher moments of the house price distribution in the context of boom-bust cycles
in housing markets. For example, Ferreira and Gyourko (2012, 2017) highlight the presence of substantial
regional heterogeneity in housing prices in the recent US boom-bust cycle, stating that “the recent US
housing boom cannot be interpreted as a single, national event, as different markets began to boom across
a decade-long period from the mid-1990s to the mid-2000s, some of them multiple times” (Ferreira and
Gyourko 2017, p. 1). However, these studies do not examine changes in the shape of the cross-sectional
house price distribution over boom-bust cycles.
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Another strand of literature closely related to the present study is research on early

warning indicators of financial crises, including the studies by Kaminsky and Reinhart

(1999), Borio and Lowe (2002), Drehmann and Juselius (2014), and Anundsen et al. (2016).

These studies are all based on the idea that financial imbalances, or vulnerabilities, build

up over time before crises arise, and that it should be possible to capture the cumulative

processes that sow the seeds of the subsequent crisis by carefully monitoring key variables

such as the credit to GDP ratio, the debt service ratio, and real estate prices. Specifically,

these studies estimate the level of a critical threshold for the deviation of a variable from its

trend such that the deviation tends to be above the threshold in crisis periods and below in

normal periods. For example, Drehmann and Juselius (2014) employ quarterly time series

data for 10 candidate variables from 26 countries and spanning the period 1980-2012 to

compare the performance of those variables as early warning indicators for 19 financial

crises that occurred during the observation period. They find that the credit to GDP ratio

outperforms other measures. The purpose of this study is similar to that of these studies on

early warning indicators, but the methodology we employ is quite different. Early warning

exercises can be seen as a statistical procedure to detect anomalies in variables like the

credit/GDP ratio around crises. Key to this procedure is prior information on crisis dates.

However, as often pointed out in previous studies, it is not always easy to obtain precise

information on crisis dates, and, more importantly, crises are by their very nature rare

events. Given this, it is not necessarily easy to improve the precision of early warning

indicators to a sufficiently high level such that policymakers can rely on them to take

remedial actions. In this study, we do not seek to characterize how key variables behave in

abnormal times. Instead, we focus on the behavior of key variables in normal times. Our

strategy is to have a clear idea about how those variables behave in normal times and then

to detect deviations from such normal behavior - that is, to detect anomalies that may

serve as early warning signals.2

Our main findings are as follows. First, the cross-sectional distribution of house prices

has a fat upper tail, and the tail part is close to a power-law distribution. This is confirmed

2Anomaly detection techniques can be categorized into supervised and unsupervised detection techniques
depending on whether they rely on a training dataset that has labeled instances for normal as well as
anomalous classes (see, for example, Chandola et al. 2009). The procedure adopted in the early warning
studies can be regarded as supervised anomaly detection, as they label some observations of, for example,
the credit/GDP ratio as anomalies using information on crisis dates. In contrast, our procedure is essentially
unsupervised anomaly detection, since we do not label observations as normal or anomalous. See Chandola
et al. (2009) for more on the distinction between supervised and unsupervised anomaly detection.
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by the goodness-of-fit test proposed by Malevergne et al. (2011). On the other hand, the

cross-sectional distribution of house sizes, as measured by the floor space, has an upper tail

that is less fat than that of the price distribution and is close to an exponential distribution.

These two findings suggest a particular functional form of hedonic regression to identify

the size effect. We construct size-adjusted prices by subtracting the house size (multiplied

by a positive coefficient) from the log price and find that the size-adjusted price follows

a lognormal distribution for most of the observation period. An important exception is

the period of the housing bubble and its collapse in 1987-1995, during which the price

distribution in each year has a power-law tail even after controlling for the size effect. This

suggests that the shape of the size-adjusted price distribution, especially the shape of the

tail part, may contain information useful for the detection of housing bubbles.

Second, we conduct additional analyses to investigate in more detail the mechanism

responsible for the deviation of the size-adjusted price distribution from a lognormal dis-

tribution during the bubble period. Specifically, we divide the area covered by our sample

(Greater Tokyo) into small pixels and find that size-adjusted prices almost follow a lognor-

mal distribution within each of these pixels even during the bubble period, but the means

and variances of the distributions are highly dispersed across different pixels. This finding

implies that the sharp price hike during the bubble period was concentrated in particular

areas, and this spatial heterogeneity is the source of the fat upper tail observed for the

bubble period.3 We interpret this as evidence suggesting that during a bubble period there

is an increase in market segmentation.

The rest of the study is organized as follows. Section 2 provides a brief overview of

the Japanese housing bubble in the late 1980s. Section 3 then explains the dataset and

the empirical strategy we employ. Next, Sections 4 and 5 present our size- and location-

adjustments to house prices. Finally, Section 6 concludes the paper.

2 Overview of the Japanese Real Estate Bubble in the Late
1980s

In this section, we provide a brief overview of what happened during the Japanese real

estate bubble in the late 1980s and its collapse in the 1990s, as well as how the government

3In this context, it is interesting to note that Cochrane (2005) argues that an important feature of
the tech stock bubble in the late 1990s is that it was concentrated in stocks related to internet business.
Cochrane (2005, p. 191) observes that “if there was a ‘bubble,’ or some behavioral overenthusiasm for stocks,
it was concentrated on Nasdaq stocks, and Nasdaq tech and internet stocks in particular.”
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and the central bank responded.

2.1 The real estate bubble in the late 1980s and its collapse in the 1990s

Figure 1 shows changes in the mean of the cross-sectional house price distribution in the

upper panel, the standard deviation in the middle panel, and the transaction volume in the

lower panel. The data is compiled from individual listings in a real estate advertisement

magazine published on a weekly basis.4 We see that the mean price exhibits a sharp increase

between the beginning of 1987 and the beginning of 1988. Previous studies refer to this as

the first phase of the housing bubble in Tokyo. After a short break in 1988, prices started

to rise again in 1989 and continued to do so until the fall of 1990. This is the second phase

of the housing bubble. Soon after the fall of 1990, prices started to turn down, followed

by a slow but persistent decline for more than a decade until prices bottomed out in 2002,

when the mean price reached the level before the bubble started in 1987. Prices finally

began to rise again in 2003 and continued to rise until registering a sharp decline in 2008

due to the global financial crisis.

Turning to the standard deviation shown in the middle panel, this exhibits a sharp rise

during the first phase of the bubble and stayed high during the second phase.5 Finally, the

bottom panel, which shows the transaction volume, indicates that the number of trans-

actions exhibits a sharp increase at the beginning of 1989, exactly when the mean price

started to rise, although the transaction volume remained practically unchanged during

the first phase of the bubble. Somewhat interestingly, the transaction volume remained at

a high level even in 1991 and 1992, when the mean price had already started to decline.

Okina et al. (2001) identify three characteristics of the Japanese economy during the

bubble period. The first characteristic is a rapid and substantial rise in asset prices, in-

cluding stock and real estate prices. Stock prices exhibited a rapid rise during the initial

stage of the bubble; the Nikkei 225 began to accelerate in 1986 and the index hit a peak

of 38,915 yen at the end of 1989, when it was 3.1 times higher than at the time of the

4More details on the dataset used in the paper are provided in the next section.
5We also see a secular increase in price dispersion since 1993. We are not quite sure why this is the

case, but recent studies, including those by Van Nieuwerburgh and Weill (2010) and Gyourko et al. (2006)
find some evidence that the rise in house price dispersion across regions in the United States is related to
the change in income distribution across regions. For example, Van Nieuwerburgh and Weill (2010) find
that the cross-sectional coefficient of variation of house prices across 330 metropolitan statistical areas in
the United States increased from 0.15 in 1975 to 0.53 in 2007. Through a counterfactual simulation, they
show that this increase in the dispersion of house prices is accounted for mostly by the increase in income
inequality.
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Figure 1: Weekly fluctuations in prices and transaction volume

Plaza Agreement in September 1985. Land prices followed stock prices with a lag of about

one year, increasing sharply in 1987 and peaking in late 1990, as mentioned above, with

increases spreading from Tokyo to other major cities such as Osaka and Nagoya, and then

to other cities of smaller size. The second characteristic of this period is very high economic

growth. The business cycle hit a trough in November 1986 and the economy then expanded

for 51 months until 1991. Real GDP grew at an average annual rate of 5.5 percent during

this period, driven by business fixed investment, housing investment, and expenditure on

consumer durables. The third characteristic is a rapid increase in money supply and credit.

The annual growth rate of money supply reached more than 10 percent in April-June 1987

as a result of monetary easing by the Bank of Japan as well as financial deregulation. Also,

bank borrowing and financing from capital markets substantially increased in 1988 and

1989.

These three characteristics of the Japanese economy during the bubble period were
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closely related with each other. In particular, land prices, bank borrowing, and business

investment were tightly linked through the credit cycle mechanism highlighted by Kiyotaki

and Moore (1997). Shimizu and Watanabe (2013), using information from land registry

data, examine empirically whether such a link indeed exists by looking at the market value

of land owned by firms and the amount of bank lending to those firms. They show that

rapid price rises in the late 1980s raised the value of land as collateral, making it possible

for banks to extend larger loans.

2.2 Causes of the real estate bubble in the 1980s

Previous studies on the real estate bubble in the 1980s identify the following as factors

behind the emergence and expansion of the bubble: (1) aggressive behavior of financial

institutions; (2) financial deregulation; (3) inadequate risk management by financial insti-

tutions; (4) the introduction of capital adequacy requirements for banks; (5) protracted

monetary easing by the Bank of Japan; (6) taxation and regulation; (7) overconfidence and

euphoria; (8) demographic changes; (9) overconcentration of economic functions in Tokyo,

and Tokyo becoming an international financial center.6 Obviously, these factors are not

mutually independent. On the demand side, demographic changes, over-concentration, and

euphoria are three important factors, creating excess demand in the real estate market. On

the other hand, taxation and regulation were critically important on the supply side, be-

cause land taxation and land-related regulations made land supply price-inelastic, thereby

making it impossible to eliminate excess demand without raising real estate prices. On the

monetary side, expansionary monetary policy and banks’ loose lending behavior are two

important factors that made it possible for firms and individuals to have easy access to liq-

uidity.7 In the rest of this section, we will focus on the issues associated with demographic

changes and taxation.

Demographic changes and housing demand Mankiw and Weil (1989) argue that

demographic changes, such as baby booms and busts, have an impact on housing demand

and therefore on housing prices. This directly follows from the Ando-Modigliani life cycle

hypothesis; namely, people buy houses during their working career and sell them in old

age. A similar idea has recently been proposed by Nishimura (2011), who argues that

the real estate bubble in the 1980s and its collapse in the 1990s were caused, at least

6See Okina et al. (2001) for more details on each of these factors.
7See Hoshi and Kashyap (2000) on banks’ lending behavior during the bubble and its burst.
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partially, by demographic changes. His argument is based on a simple comparison of the

inverse dependency ratio (i.e., the ratio of the working-age population between 15 and 64

years of age to the rest of population, who are dependent on the working-age population)

and real land prices. The inverse dependency ratio hit a trough in 1980 and exhibited a

gradual increase until reaching a peak in 1990, when the children of the post-World War

II baby boomers reached working age. The ratio then started to decline again from 1990

onward and has continued to do so in the more than two decades since then. These ups

and downs in the inverse dependency ratio more or less coincide with those in real land

prices. Nishimura (2011) interprets this as evidence that demographic changes affect land

prices through changes in land demand.

Employing international panel data on 22 countries for 1970-2009, Takáts (2012) finds

that an increase in the population by 1 percent is associated with an increase in real house

prices by 1 percent, and that an increase in the old age dependency ratio by one percent

is associated with a decrease in real house prices by 2/3 of a percent. These results imply

that, on average, demographic factors raised house prices in advanced economies by around

30 basis point per annum in the past 40 years and will, on average, decrease house prices

in advanced economies by around 80 basis points per annum over the next 40 year.

Following Mankiw andWeil (1989), Shimizu andWatanabe (2010) estimate the weighted

average of housing demand of each generation, using the population share of each gener-

ation as weights, for each prefecture from 1975 to 2008. They find that the change in

housing demand and the change in house price are positively correlated, implying that

house prices tend to go up in a particular prefecture when housing demand there increases

due to demographic reasons. Focusing on the bubble period (i.e., 1985-1990), they find that

the cross-sectional correlation is particularly high, although the very sharp price increases

in prefectures with large populations, such as Tokyo and Osaka, cannot be accounted for

solely by demographic factors.

Land taxation and its reform in the early 1990s It has been pointed out by many

practitioners and researchers that the taxation system in Japan gave land owners an in-

centive to hold land for speculative purposes, thereby making land supply inelastic to price

changes.8 In this respect, the following two characteristics of the Japanese tax system play

8In Japan, land is taxed at three stages: inheritance tax, registration and license tax, and/or real estate
acquisition tax are applied when land is acquired; fixed property tax, urban planning tax, and/or special
land-holding tax are applied while land is held; and corporation tax, income tax, and/or inhabitant tax are
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Table 1: Chronology of policy actions related to the real estate bubble in the 1980s and its
collapse in the 1990s

1986 Tokyo Metropolitan Government introduces regulations on land transactions
1987 National Land Use Planning Act is amended

Closer monitoring of land transactions starts
1990 Local Property Tax Act is amended

Tax enforcement for agricultural land in urban areas is strengthened
1990 National Land Use Planning Act is amended

Surveillance of resale of properties within two years is introduced
1990 Ministry of Finance issues a directive and guidance requesting financial institutions

(1) to contain the increase in lending to property-related firms to within the increase
in total lending, and (2) to report lending to the real estate industry,
construction industry, and non-banks

1991 Land Value Tax Act is enacted
1992 Land Value Tax is newly introduced
1993 Cooperative Credit Purchasing Co. is established
1995 Tokyo Kyodo Bank (Japanese RCC) is established
1998 Act on Emergency Measures for Early Strengthening of Financial Functions is enacted

a key role. First, tax imposed on the holding of land has been extremely low in Japan when

compared with other countries. This is particularly true for agricultural land, and the rate

of tax imposed on the holding of agricultural land, even for agricultural land in urban

outskirts, has been extremely low. This low cost of holding land, especially agricultural

land, results in the inefficient use of land and in land being left unused, and makes hold-

ing land more profitable than holding financial and other non-financial assets, promoting

speculative land transactions. Second, as for taxes on capital gains, the tax rates were not

sufficiently high to prevent speculative transactions; that is, for individuals, an income tax

of 20 percent was imposed on capital gains up to 40 million yen and a consolidated tax of

50 percent above this threshold: for companies, apart from ordinary corporation tax, an

additional tax of 20 percent was imposed on capital gains on land held for ten years or less.

In the early 1990s, a series of tax reforms was implemented as a part of policy responses

to suppress speculative land transactions following the publication of the report on “Basic

Issues Regarding Revisions in the Land Tax System” in May 1990 by the Land Tax Sys-

tem Subcommittee. A chronology of tax reforms is presented in Table 1. The tax reforms

implemented in the early 1990s consist of three parts. First, in January 1992, property

tax rates were raised and a land value tax was newly introduced to make land less attrac-

tive as an investment, thereby suppressing speculative land transactions. Second, capital

applied to capital gains when land is transferred.
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gains taxation was strengthened. In particular, a punitively high tax rate was imposed on

capital gains from transactions in land that has been held only for a short period. For

example, in the 1991 reform, a separation tax of 30 percent was additionally introduced

for capital gains on transactions in land held by companies for two years or less. Finally,

the tax rate associated with the holding of land for agricultural purposes in urban areas

was raised to the same level as that for land for residential purposes in order to eliminate

the special treatment of land for agricultural purposes. Practices and methods regarding

land appraisals for inheritance tax purposes were also amended.

3 Data and Empirical Strategy

3.1 Data

We use a unique dataset that we compiled from individual listings in a widely circulated

real estate advertisement magazine published on a weekly basis by Recruit Co., Ltd., one

of the largest vendors of residential lettings information in Japan. The dataset covers the

Greater Tokyo Area for the period 1986 to 2009, thus including the bubble period in the

late 1980s and its collapse in the first half of the 1990s. It contains 724,416 listings for

condominiums and 1,602,918 listings for single family houses.9 In this paper we use data

only for condominiums. The Greater Tokyo Area covered in the dataset includes the 23

special wards of Tokyo, other areas making up the Tokyo Metropolis, as well as adjacent

cities and suburbs. The dataset covers more than 95 percent of all transactions in the 23

special wards (i.e., central Tokyo), while the coverage for the other areas is somewhat more

limited. This dataset has been used in a series of studies, including Shimizu et al. (2010),

which compares hedonic and repeat-sales measures in terms of their performance.

3.2 Empirical strategy

A widely used approach to deal with product heterogeneity in terms of quality is hedonic

analysis, which has been employed in a number of studies to analyze real estate prices.

The core idea of hedonic analysis is that the value of a product is the sum of the values of

individual product characteristics. Rosen (1974) argues that a house can be regarded as a

9The dataset contains full information about the evolution of the posted price for a housing unit from the
week when it was first listed until the final week when it was removed because of a successful transaction.
In this study, we only use the price in the final week, since this can be safely regarded as sufficiently close
to the contract price. The number of listings shown in the text does not include those prices listed before
the final week.

11



set of attributes and that different houses consist of different sets of attributes. Most im-

portantly, such a set of attributes essentially cannot be unbundled, so that each household

buys one house and obtains a flow of housing services from it.10 Shimizu et al. (2010) start

their analysis by assuming that the value of a house is the sum of the values of attributes

such as its floor space, its age, the commuting time to the nearest station, and so on, and

run hedonic regressions using these attributes as independent variables.

This idea has important implications regarding the shape of the cross-sectional distri-

bution of house prices. To show this, let us start by assuming that the price of house i at

a particular point in time, which is denoted by Pi,
11 is the sum of K components:

Pi = F (Xi1, Xi2, . . . , Xik, . . . , XiK) (1)

where Pi and Xik are both random variables and Xi1, . . . , XiK are assumed to be inde-

pendent from each other. Furthermore, we assume a multiplicative functional form such

that

Pi =
K∏
k=1

Xik. (2)

Taking the logarithm of both sides of this equation yields

lnPi =

K∑
k=1

xik, (3)

where xik ≡ lnXik. This equation appears frequently in hedonic analyses of house prices.

It simply states that the price of a house is equal to the sum of K random variables.

Given this setting, the central limit theorem tells us that the sum of these random

variables converges to a normal distribution if the number of attributes, K, goes to infinity.

Let us denote the variance of xik by s2k and define the average variance s̄2K as

s̄2K ≡ 1

K

(
s21 + s22 + · · ·+ s2K

)
.

Then, according to the Lindeberg-Feller central limit theorem, the sum of random variables∑K
k=1 xik converges to a normal distribution as K goes to infinity, if the average variance

10A similar idea has been adopted in recent studies applying assignment models to the housing markets
including Landvoigt et al. (2015), Piazzesi and Schneider (2016), Määttänen and Terviö (2014), and Rios-
Rull and Sanchez-Marcos (2008). In these models, equilibrium prices are determined so that households
with high (low) demand for housing services are assigned to high (low) quality houses. These studies show
that the distribution of equilibrium prices across houses is determined by the distribution of quality across
houses and the distribution of characteristics across households. Rosen (1974) and Landvoigt et al. (2015)
show that the assumption of no costless unbundling implies limits to arbitrage in housing markets.

11Note that the subscript for time is dropped here to simplify the exposition.
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Figure 2: House price distribution in 2008

s̄2K converges to a finite constant (namely, limK→∞ s̄2K = s̄2) and the following condition

is satisfied:

lim
K→∞

maxk≤K{sk}
Ks̄K

= 0. (4)

In other words, the theorem states that the sum of random variables will tend to be

normally distributed as far as condition (4), which is referred to as the Lindeberg condition,

is satisfied. A notable feature of this result is that it does not require that the variables in

the sum come from the same underlying distribution. Instead, the theorem requires only

that no single term dominates the average variance, as stated in (4). Put differently, the

Lindeberg condition states that none of the random variables is dominantly large relative

to their sum.12 A famous textbook example of the central limit theorem is the distribution

of persons’ height. The height distribution of, say, mature men of a certain age can be

considered normal, because height can be seen as the sum of many small and independent

effects. Similarly, the log price of houses will be normally distributed if house prices are

determined as the sum of many small and independent effects.

The above argument suggests that the lognormal distribution can be seen as a bench-

mark for the cross-sectional distribution of house prices. However, some previous studies

on house price distributions find that the actual distributions have fatter tails than a log-

normal distribution. For example, McMillen (2008), using data on single family houses in

Chicago for 1995, shows that the kernel density estimates for the log price are asymmetric,

with a much fatter lower tail. Against this background, we examine the extent to which

the house price distribution deviates from a lognormal distribution using our observations

12For more on this theorem, see Feller (1968). Greene (2003) provides a compact description of various
versions of the central limit theorem including this one.
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for 2008. The results are presented in Figure 2, where the left panel shows the probability

density function (PDF), with the horizontal axis representing the yen price in logarithm

and the vertical axis representing the corresponding density, also in logarithm. The empir-

ical distribution is shown by the red line, while the lognormal distribution with the same

mean and standard deviation as in the data is shown by the black dotted line. The figure

indicates that the tails of the empirical distribution are fatter than those of the lognor-

mal distribution. In particular, the upper tail of the empirical distribution is much fatter

than that of the lognormal distribution. To examine the differences in the upper tail more

closely, we accumulate the densities from the right (upper) tail to produce the cumulative

distribution function (CDF), which is shown in the right panel. In this panel, the value

on the vertical axis corresponding to the value of 9.2 on the horizontal axis, for example,

is 0.01, meaning that the fraction of houses whose prices are equal to or higher than that

price level is 1 percent. We now see more clearly that the upper tail of the empirical dis-

tribution is fatter than that of the lognormal distribution. For example, the fraction of

housing units whose price deviates from the mean by more than 3σ is about 1.47 percent,

while the corresponding number for the lognormal distribution is only 0.26 percent.

What causes the empirical distribution to deviate from the benchmark (i.e., the log-

normal distribution)? This is the main topic we address in this paper. Our hypothesis is

that some of the factors that determine house prices are dominantly volatile, so that the

Lindeberg condition is violated. Denoting these dominant factors by vector Zi, the house

price distribution, Pr(Pi = p), can be decomposed as follows:

Pr(Pi = p) =
∑
z

Pr(Pi = p | Zi = z) Pr(Zi = z). (5)

Note that the house price distribution conditional on Zi, namely Pr(Pi = p | Zi = z),

should be a lognormal distribution, since the dominant factors are now fully controlled

for. This means that the right-hand side of equation (5) is a weighted sum of lognormals,

with the weights being given by Pr(Zi = z). We know that the sum of lognormals with

different means and variances is no longer a lognormal (see, for example, Feller 1968), and

our hypothesis is that this is why the house price distribution deviates from the benchmark.

Given this hypothesis, we proceed as follows in the remainder of the study: we first specify

the dominant factors and then eliminate them, thereby constructing prices that are adjusted

for these factors; finally, we examine whether these adjusted prices follow a lognormal

distribution.

14



10-4

10-3

10-2

10-1

100

-8 -6 -4 -2  0  2  4  6  8

P
D

F

Normalized   log P

1986
1987
1988
1989
1990
1991
1992
1993

Normal

10-5

10-4

10-3

10-2

10-1

100

-1  0  1  2  3  4  5  6  7  8

C
D

F

Normalized   log P

1986
1987
1988
1989
1990
1991
1992
1993

Normal

10-4

10-3

10-2

10-1

100

-8 -6 -4 -2  0  2  4  6  8

P
D

F

Normalized   log P

1994
1995
1996
1997
1998
1999
2000
2001

Normal

10-5

10-4

10-3

10-2

10-1

100

-1  0  1  2  3  4  5  6  7  8
C

D
F

Normalized   log P

1994
1995
1996
1997
1998
1999
2000
2001

Normal

10-4

10-3

10-2

10-1

100

-8 -6 -4 -2  0  2  4  6  8

P
D

F

Normalized   log P

2002
2003
2004
2005
2006
2007
2008
2009

Normal

10-5

10-4

10-3

10-2

10-1

100

-1  0  1  2  3  4  5  6  7  8

C
D

F

Normalized   log P

2002
2003
2004
2005
2006
2007
2008
2009

Normal

Figure 3: House price distributions by year

Diewert et al. (2011) show that the most important characteristics determining the

price of a property are the land area of the property, the livable floor space area of the

structure, and the location of the property. Similarly, previous studies on house prices in

Japan, including Shimizu et al. (2010), find that the two key determinants of the price of

a housing unit (especially in the case of condominiums) are its floor space and its location.

These empirical evidence suggests that the size and the location of a property are key

candidates for the Z variables. We will identify and eliminate the size effect in the next

section and the location effect in Section 5.
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4 Size-adjustment to House Prices

4.1 Distribution of unadjusted house prices

Figure 3 presents the PDF and CDF of the cross-sectional price distribution for each

year from 1986 to 2009. To make the price distributions in different years comparable, we

normalize the log prices in year t by subtracting the mean in year t (i.e., the mean of

log prices in year t) and dividing by the standard deviation in year t (i.e., the standard

deviation of log prices in year t). The lognormal lines in the figure represent the CDF of a

standard lognormal distribution. Note that the CDFs are constructed in the same way as

in Figure 2, that is, the value on the vertical axis corresponding to a price level is the sum

of the densities above that price level.

The first thing we see from the figure is that, as in Figure 2, the PDFs and the CDFs

show fatter upper tails than a lognormal distribution. More importantly, we see that the

deviation from a lognormal distribution tends to be larger for the late 1980s and early 1990s.

Specifically, the PDFs in these years are substantially skewed to the right, indicating that

during the bubble period house prices did not rise by the same percentage for every housing

unit; instead, price increases were concentrated in particular housing units, so that relative

prices across houses changed significantly.

The CDFs in this figure provide more detailed information regarding the shape of the

price distributions. We see that the CDF for each year forms an almost straight line in this

log-log graph, implying that the house price distribution is well approximated by a power

law distribution (or a Pareto distribution) at least in the tail part, the PDF and CDF of

which are given by

Pr(Pit = p) =
ζtm

ζt
t

pζt+1
; Pr(Pit ≥ p) =

(
mt

p

)ζt

; p > mt > 0 (6)

where Pit denotes the price of house i in period t, and ζt and mt are time-variant positive

parameters.13 The shape of a power law distribution is mainly determined by the parameter

ζt, which is referred to as the exponent of the power law distribution. Smaller values for ζt

imply fatter tails. Note that the CDF given in (6) implies that

lnPr(Pit ≥ p) = −ζt ln p+ ζt lnmt.

13See Gabaix (2009) for an extensive survey of empirical and theoretical studies on power laws in various
economic contexts such as income and wealth, the size of cities and firms, and stock market returns.
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Figure 4: Power law distribution versus lognormal distribution

In other words, the log of the cumulative probability should be linearly related to the log

price, and the slope of a linear line between the two variables should be equal to −ζt. The

CDFs in Figure 3 suggest the presence of such a linear relationship between the log price

and the log of the cumulative probability. We see from the CDF in Figure 2 that ζ2008 is

about 2.8. Similarly, we find from the corresponding figures for the other years (which are

not shown due to space limitations) that ζ for those years also takes a value of around 3.14

As a goodness-of-fit test, we employ the test proposed by Malevergne et al. (2011).

Specifically, we test the null hypothesis that, beyond some threshold u, the upper tail of

the house price distribution is characterized by a power law distribution,

Pr(P = p; α) = α · uα

pα+1
· 1p≥u

against the alternative that the upper tail follows a lognormal beyond the same threshold,

14Note that we cannot obtain estimates for ζt from Figure 3. The CDFs in Figure 3 are for normalized
prices, which are defined by [Pit exp(−µt)]

1/σt , where µt and σt are the mean and the standard deviation
in year t. Therefore, the slope of each CDF in Figure 3 is given by σtζt (rather than ζt), if the original
price follows the power law distribution given by (6). Many examples of power law distributions have been
provided. For example, the net worth of Americans follows a power law distribution with an exponent of
1.1; the frequency of the use of words follows such a distribution with an exponent of 1.2; the population
of US cities has an exponent of 1.3; the number of hits on websites has an exponent of 1.4; the magnitude
of earthquakes has an exponent of 2.8; and price movements in financial markets have an exponent of 3
(or lower). The exponents for the house price distributions estimated here are greater than most of these
figures, implying that the tail parts of the house price distributions are less fat than those in the other
examples of power law distributions.
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i.e.,

Pr(P = p; α, β) =

[√
π

β
exp

(
α2

4β

)(
1− Φ

(
α√
2β

))]−1
1

p
exp

(
−α ln

p

u
− β ln2

p

u

)
· 1p≥u,

where Φ(·) represents the CDF of a standard normal distribution. Note that this is equiva-

lent to testing the null that the upper tail of the log price follows an exponential distribution

against the alternative that it follows a normal distribution. For this transformed test, Del

Castillo and Puig (1999) have shown that the clipped empirical coefficient of variation

ĉ ≡ min(1, c) provides the uniformly most powerful unbiased test, where c is the empirical

coefficient of variation.

The result of our goodness-of-fit test is presented in Figure 4, where the horizontal axis

represents the year and the vertical axis represents the number of observations above the

threshold u. For example, 103 on the vertical axis means that the threshold u is set such

that the number of observations above u is 103. A black square indicates that the null

is rejected at the 1 percent significance level for a particular year-threshold combination,

while a white square indicates that the null is not rejected at the same significance level.

The figure shows that a power law distribution provides a good approximation for the 500

most expensive houses, while a lognormal distribution provides a better approximation for

the set of less expensive houses.

4.2 Distribution of house sizes

Previous studies on wealth (or income) distributions across households have typically found

that those distributions are characterized by fat upper tails, and that they follow a power

law distribution. Given that houses form an important part of households’ wealth, it may

be not that surprising that we detect a similar pattern in the house price distribution.

However, the result that house prices follow a power law distribution is not consistent with

the argument based on the central limit theorem. Why do house prices follow a power law

distribution rather than a lognormal distribution? As a first step to address this question,

we decompose the house price distribution as follows:

Pr(Pit = p) =
∑
s

Pr(Pit = p | Si = s) Pr(Si = s), (7)

where Si represents the size of housing unit i, which is measured by the floor space of

that unit. The term Pr(Si = s) represents the distribution of house sizes, while the term∑
Pr(Pit = p | Si = s) represents the distribution of house prices conditional on house
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Figure 5: Cumulative house size distributions

size. An important thing to note is that even if each of these conditional distributions

is lognormal, the weighted sum of lognormals with different mean and variance is not a

lognormal distribution. This is a potential source of the power law tails that we observe in

our house price data.

We start by examining the term Pr(Si = s) in equation (7). Figure 5 presents the

CDFs of house sizes for each year, with the floor space, measured in square meters, on the

horizontal axis and the log of the CDF on the vertical axis. We see that the CDF for each

year is close to a straight line in this semi-log graph, implying that the size distribution

can be approximated by an exponential distribution whose PDF and CDF are given by

Pr(Si = s) = λt exp (−λts) ; Pr(Si ≥ s) = exp (−λts) ; λt > 0. (8)

Note that the CDF shown above implies that

lnPr(Si ≥ s) = −λts,

so that the log of the CDF depends linearly on house size. This is what we see in Figure

5. The slope of the CDF line, namely the value of λ, is almost identical for the different

years and is somewhere around 0.04.

The fact that house sizes follow an exponential distribution implies that the tails of the

size distribution are less fat than those of the price distribution. For example, for 2008, the

fraction of housing units whose size deviates from the mean by more than 3σ is only 0.94

percent, while the corresponding number for the price distribution is 1.47 percent.15

15To see why the tails of the house size distribution are less fat than the tails of the price distribution,
consider a simple example in which household A has 100 times as much wealth as household B, so that A
spends 100 times as much money on a house as B. What does A’s house look like? Does it have a bathroom
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4.3 Size-adjusted prices

We now turn to the relationship between the price of a house and its size, which is repre-

sented by the conditional probability Pr(Pit = p | Si = s) in equation (7). We propose a

hedonic model that is consistent with the fact that house prices and sizes follow, respec-

tively, a power law distribution with an exponent of ζt and an exponential distribution

with an exponent of λt. That is, the log prices are determined by

lnPit ∼
(
λt

ζt

)
Si + ϵit, (9)

where ϵit is a normally distributed random variable, which, as we saw in Section 3.2, can be

interpreted as the sum of many small and independent factors. To obtain equation (9), we

first note that the PDF of the exponential distribution given in (8) implies that (λt/ζt)Si

follows an exponential distribution with an exponent of ζt if Si itself is an exponential

distribution with an exponent of λt. Next, we can show that the sum of the random variable

that follows an exponential distribution and the random variable that follows a normal

distribution is well approximated by the exponential distribution when the sum takes large

values (because of the much fatter tails of an exponential distribution). Combining the

two, the right-hand side of (9) is well approximated by an exponential distribution with an

exponent of ζt when the sum of the two terms on the right-hand side takes large values. On

the other hand, the fact that Pit follows a power law distribution with an exponent of ζt

implies that lnPit follows an exponential distribution with an exponent of ζt. Thus, we can

confirm that each side of equation (9) follows an identical distribution with an identical

exponent.16

To empirically test the hedonic model given by (9), we first examine for a linear rela-

tionship between the log price of houses and their size. The upper panels of Figure 6 show

the floor space on the horizontal axis and the median of the log price corresponding to

that size on the vertical axis. These panels indicate that there exists a stable linear rela-

that is 100 times larger than the one in B’s house? Alternatively, does it have 100 bathrooms? Needless to
say, neither is true, because even a person of A’s wealth would have little use for such a gigantic bathroom
(or so many bathrooms). Instead, it is more likely that the size of A’s house (and therefore the size and/or
number of its bathroom) is only, say, 10 times greater and, consequently, the unit area price of A’s house is
10 times higher than B’s. This is similar to the finding by Bils and Klenow (2001) that richer households
not only consumer more goods but also higher quality and therefore more expensive goods.

16The price-size relationship described by equation (9) provides an answer to the question regarding the
choice of functional form for hedonic price equations, which has been extensively discussed in previous
studies such as Cropper et al. (1988). The novelty of our approach is that we derive this functional form
not from economic theory but from the statistical fact that house prices and sizes follow a power law and
an exponential distribution, respectively.
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Figure 6: Relationship between house size and price

tionship between the two variables. Furthermore, equation (9) implies that the price per

square meter, P/S = [exp(λ/ζ)S +positive constant]/S, decreases with S when S is small

and increases with S when S is sufficiently large, so that there should exist a U-shaped

relationship between the price per square meter and house size. The lower panels of Figure

6, in which the vertical axis now measures P/S, confirms this prediction.

Second, we run an ordinary least squares regression of the form

lnPit = atSi + bt + ηit (10)

to see whether the disturbance term ηit is indeed normally distributed as assumed in (9).

The regression results are presented in Figures 7 and 8. Figure 7 shows the estimates of a

and b for each year. The estimate of a is almost identical across years and is around 0.013,

implying that an increase in house size by a square meter leads to a 1.3 percent increase

in the house price. More importantly, the estimate of a is very close to the value predicted

by (9). That is, the value of ζ is around 3, as we saw in Section 4.1, and the value of λ is

about 0.04, as we saw in Section 4.2, so that the coefficient on Si, namely λ/ζ, should be

somewhere around 0.013 (= 0.04/3). This is quite close to the point estimate of a for each

year.17 Turning to the estimate of b, this exhibits substantial fluctuations: it increases by

17Note that the price per square meter, exp(aS + b)/S takes its minimum value when S is equal to
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Figure 7: Price-size regressions

more than 20 percent per year from 1986 to 1990 and then declines by 10 percent per year

from 1990 to 2002.

Figure 8 shows the CDFs of size-adjusted prices, which are defined as

P̃it ≡
[
Pit exp(−âtSi − b̂t)

]1/σ̂t

, (11)

where ât and b̂t are the estimates of at and bt, and σ̂t is the estimate for the standard

deviation of ηit. Note that the hedonic model given by (9) implies that P̃it should be a

lognormal distribution. The CDFs of the size adjusted prices are shown in the three panels

on the right-hand side of Figure 8, while the price distributions without size adjustments

from Figure 3 are replicated on the left-hand side. Comparing these two sets of CDFs, we

see that the CDFs of the size-adjusted prices are much closer to the CDF of a lognormal

distribution. More specifically, the CDFs for 2002 to 2009, which are shown in the lower

right panel, are almost identical to the CDF of a lognormal distribution. The same applies

to the CDFs for 1994 to 2001, which are shown in the middle right panel. However, the

CDFs for 1986 to 1993, which are presented in the upper right panel, are still far from the

CDF of a lognormal distribution, although they are slightly closer to it than the CDFs of

the non-adjusted prices.

We apply the same methodology to land price data for Japan.18 An advantage of the

land price data is that it covers the period 1974-2008, which is much longer than the period

1/a. Given the estimate of a, this implies that the price per square meter takes its minimum value when
S = 1/0.013 ≈ 75, which is consistent with what we see in the lower two panels of Figure 6.

18This dataset contains land prices for about 30,000 sites across Japan. The price of each site is assessed
by the Land Appraisal Committee once a year and made available to the public. The dataset contains
information about various attributes of a particular piece of land, including its address, size, shape, types
of land use (residential, commercial, or industrial), etc. In this paper, we focus on land for residential use
that is smaller than 300 square meters and located in the Greater Tokyo Area. The number of observations
ranges from 2,000 to 5,000 per year.
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Figure 8: Cumulative distributions of size-adjusted house prices

covered by the house price data used in the previous subsections. Using this dataset, we

quantitatively evaluate the degree to which the CDF of size-adjusted prices deviates from

the CDF of the normal distribution. We denote this measure of deviation as D
√
N , where

D is the maximum difference between the empirical CDF and the Gaussian CDF, and

N is the number of observations. This is the statistic used in the Kolmogorov-Smirnov

test, which is a nonparametric test to determine if a sample comes from a population with

a specific distribution (the normal distribution in our case). Figure 9 shows the result.

The null hypothesis that price observations are drawn from the normal distribution is

rejected at the 1 percent significance level if D
√
N > 1.62. We see a statistically significant

deviation from the normal distribution in 1984-1987, 1990-1991, 1993-1994, and 2002-2008.

The period 1984-87 corresponds to the first phase of the bubble, which was explained in

Section 2, while the periods 1990-91 and 1993-94 correspond to the second phase. More
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Figure 9: Deviation from the normal distribution of the land price data

interestingly, we see a statistically significant deviation in 2002-2006, when the Bank of

Japan implemented quantitative easing to escape from deflation, as well as in 2007-2008,

when the Bank of provided liquidity and additional monetary easing in response to the

onset of the global financial crisis.

5 Location Adjustment to House Prices

The analysis in the previous section suggested that size-adjusted prices followed a lognormal

distribution at least during calm periods without large price fluctuations. This is consistent

with the idea that, as stated in (7), the power law tails of the original prices stem from the

mixture of lognormal distributions with different mean and variance. At the same time, the

analysis in the previous section showed that the fat tails of the price distribution remained

largely unchanged during the bubble period (i.e., the late 1980s and the first half of the

1990s) even after controlling for the size effect. This suggests that there still remains some

mixing of lognormal distributions.

In this section, we test the hypothesis that the power law tails of the size-adjusted

price distribution during the bubble period arise due to the fact that the price distribution

consists of a mixture of different lognormal distributions corresponding to different regions.
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Figure 10: Dispersion of ar, br and σr across pixels

To do so, we start by decomposing the size-adjusted price distribution into the sum of

conditional distributions:

Pr
(
P̃irt = p

)
=

∑
θ

Pr
(
P̃irt = p | θrt = θ

)
Pr

(
θrt = θ

)
, (12)

where P̃irt denotes the size-adjusted price of a house located in region r, which is defined

by P̃irt ≡ Pirt exp(−artSir − brt). The vector of parameters θrt is defined as

θrt ≡ (art, brt, σrt), (13)

where the parameters art, brt, and σrt are the coefficient on the house size variable, the

constant term, and the standard deviation of the disturbance term in equation (10), but

it is assumed in this section that they could differ depending on the location. The location

effect is fully controlled for in the conditional distributions Pr(P̃irt = p | θrt = θ), so that

they should be lognormal. According to equation (12), the distribution of P̃irt is a mixture

of these lognormal distributions, each of which is for a different region.
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We first examine the distribution of θrt across different regions. Specifically, we divide

the Greater Tokyo Area into pixels of 0.033 degrees latitude and 0.033 degrees longitude or

roughly 3.3 by 3.3 km.19 Then, using size-adjusted prices within a pixel, we run a regression

of the form

lnPirt = artSir + brt + ηirt (14)

for each combination of r and t and obtain θ̂rt ≡ (ârt, b̂rt, σ̂rt). The regression results are

presented in Figure 10.20 The three panels on the left show the CDFs of ârt, while the

panels in the middle and on the right respectively show the CDFs of b̂rt and σ̂rt. The

CDFs of ârt indicate that a is less dispersed across pixels during the period of the bubble

and its collapse (1987-1995) than in the other years. On the other hand, the CDFs of b̂rt

and σ̂rt show that these parameters are more highly dispersed during the same period,

implying that the sharp price hike during the bubble period was concentrated in particular

pixels. Put differently, the housing market was segmented during this period.

Next, we investigate whether the conditional distributions are close to a lognormal

distribution. Using the estimates of θrt obtained from the regression, we calculate the

size-adjusted prices for each pixel, which are given by:

P̃irt ≡
[
Pirt exp(−ârtSir − b̂rt)

]1/σ̂rt

. (15)

The estimated CDFs of P̃irt are presented in Figure 11 for the years 1986, 1990, 1994,

1998, 2002, and 2006. Note that each of the six panels contains four different lines, each of

which corresponds to a different pixel size, namely 4.190 by 4.190 degrees, 0.524 by 0.524

degrees, 0.263 by 0.263 degrees, and 0.033 by 0.033 degrees. The results for 1998, 2002,

and 2006 indicate that the CDFs are very close to a lognormal distribution, irrespective

of pixel size. This is not very surprising given that, as we saw in the previous section, the

CDFs in these years were already close to a lognormal distribution before controlling for

the location effect. For the period of the bubble and its collapse, we see more interesting

results: for 1986, 1990, and 1994, the estimated CDF tends to be closer to a lognormal

distribution the smaller the pixel size.21

19Note that one degree is approximately 100 km.
20In conducting these regressions, we use only pixels with more than twenty transactions in a year. The

number of pixels used in the regressions is about 300 for each year.
21It should be noted that the estimated CDF does not fully converge to a lognormal even in the case of

the smallest pixels. It may be the case that the CDF becomes much closer still to a lognormal distribution
if we were able to reduce the pixel size even further. Unfortunately, we cannot do so because of the limited
number of observations.
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Figure 11: Cumulative distributions of size-adjusted house prices for different pixel sizes

In sum, the analysis in this section shows that the distribution of size-adjusted prices

within a pixel is fairly close to a lognormal distribution even for the period of the bubble

and its collapse, but its mean and standard deviation are highly dispersed across different

pixels. As a result, the sum of these lognormals turns out to be far from a lognormal

distribution during this period. In other words, heterogeneity across pixels in terms of the

mean and standard deviation is the source of the fat upper tail of the size-adjusted price

distribution during the period of the bubble and its collapse.

The results shown above suggest the presence of submarkets; that is, the prices of

houses belonging to a particular submarket are almost identical in the sense that they

are drawn from the same lognormal distribution, but the prices of houses belonging to

different submarkets differ as they are from different distributions. More importantly, the

size of submarkets tends to be smaller in a bubble period than in normal times, implying
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Figure 12: Estimate of the size of submarkets
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Figure 13: Evolution of the average size of submarkets

that market segmentation is more substantial in a bubble period.

As a final exercise, we estimate the size of submarkets in the following way. First, we

collect the n− 1 houses that are closest to a house i that was sold in month t. Second, we

calculate the size-adjusted price for each of the n houses (i.e., house i and the closest n− 1

houses) and conduct Geary’s test to see whether the log of size-adjusted prices follows a

normal distribution. We start this from a small value of n and repeat the exercise until

we find n∗
it such that the null is rejected for values greater than n∗

it. Finally, we define the

measure of the size of a submarket, Θit, as Θit ≡ − log(n∗
it/Jt), where Jt is the number of

houses that were sold in month t. Note that Θit is equal to zero if all houses in the Greater

Tokyo Area belong to a single market and that the larger Θit is, the smaller is the size of a

submarket. We calculate Θit for all houses that were sold in each month of the observation

period.

Figure 12 shows the estimated value of Θit for each house sold in 1988, 1990, 1992, 1994,

1996, and 1998. The value of Θit was close to zero for most of the houses sold in 1988,

which means that the size of submarkets was basically very large in that year. However, Θit

exhibited a substantial increase in 1990, especially for houses located in the central part of

Tokyo, suggesting that submarkets were of much smaller size than in 1988. This continued

until 1998, when the value of Θit returned to zero for almost all houses sold in that year.

Figure 13 shows how the average value of Θit across i, i.e., J
−1
t

∑
iΘit, fluctuates over time.

It turns out that the size of submarkets tended to be small in the bubble period, which is
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not that surprising given the results shown in Figures 10 and 11. More interestingly, the

size of submarkets also tended to be small in the period from March 2001 to March 2006,

when the Bank of Japan pursued quantitative easing, and has also been small since slightly

before April 2013, when the Bank of Japan introduced quantitative and qualitative easing.

6 Conclusion

In this paper, we found that the cross-sectional distribution of house prices in the Greater

Tokyo Area has a fat upper tail and that the tail part is close to a power law distribution.

On the other hand, the cross-sectional distribution of house sizes measured in terms of

floor space has less fat tails than the price distribution and is close to an exponential dis-

tribution. We proposed a hedonic model consistent with these findings and, using data for

Greater Tokyo, confirmed that size-adjusted prices follow a lognormal distribution except

for the period of the asset bubble and its collapse, for which the price distribution remains

asymmetric and skewed to the right even after controlling for the size effect. As for the

period of the bubble and its collapse, we found evidence that the sharp price movements

were concentrated in particular areas, and that this spatial heterogeneity is the source of

the fat upper tail.

The analysis in this paper shows that the cross-sectional distribution of size-adjusted

prices is very close to a lognormal distribution for normal times but deviates substantially

from a lognormal for the bubble period. This suggests that the shape of the size-adjusted

price distribution, especially the shape of the tail part, may contain information useful for

the detection of housing bubbles. That is, the presence of a bubble can be safely ruled out if

recent price observations are found to follow a lognormal distribution. On the other hand,

if there are many outliers, especially near the upper tail, this may indicate the presence of

a bubble, since such price observations are very unlikely to occur if prices follow a lognor-

mal distribution. This method of identifying bubbles is quite different from conventional

approaches based on aggregate measures of housing prices, which are estimated either by

hedonic or repeat-sales regressions, and therefore should be a useful tool to supplement

existing methods.
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